Corelatia tetracorica
intre 2 variabile artificial dihotomice
(impartirea in 2 clase este artificiala – ex:
inteligenta medie – inteligenta ridicata )
|
Inteligenta medie
|
Inteligenta ridicata
|
Note sub 8
|
43
|
16
|
Note peste 8
|
17
|
39
|
|
;
|
Corelatia partiala
cand vrem sa stim corelatia intre 2
variabile cu excluderea influentei celei de a treia:
;
|
r12=0,63; r13=0,56; r23=0,70;
; deci, dupa
excluderea influentei celei de-a treia variabile, observam o
corelatie medie intre cele 2 variabile (fata de corelatia
mare initiala)
|
Ecuatii de
regresie
- predictia liniara simpla: Y= a + bXY*X, unde
Y este scorul
prezis (criteriul)
X este scorul la testul predictor,
a este o constanta calculata dupa formula:
,
bXY este coeficientul de regresie: (rXY –
coeficientul de corelatie intre predictor si criteriu)
Aceasta
ecuatie este folosita pentru note brute. Pentru note
standard ecuatia devine: zY=rXY*zX
Exemplu:
test de
inteligenta (predictor): ; sX=7,8
performanta la
matematica: ; sY=1,3
corelatia:
rXY=0,71;
Nota unui subiect la testul de inteligenta:
X=43
Note brute
b= 0,71*1,3/7,8=0,12;
a=7,25 – 48,2*0,12=1,55;
Y=1,55 + 0,12*43=6,63
Deci, putem prognoza nota la matematica 6,63 pentru un subiect care
are nota bruta de 43 la testul de inteligenta
Eroarea standard de
estimare: =0,92
Putem spune ca 68%
din subiectii care au nota bruta la predictor 43 vor avea nota la
matematica in intervalul: 6,63±0,92 adica (5,71; 7,55)
95% din subiecti vor
avea nota in intervalul: 6,63±1,96*0,92; 99% din subiecti – in intervalul
6,63±2,58*0,92
Note standard
zX=(43 –
48,2)/7,8= - 0,67;
zY=0,71*(-0,67)=-0,47 (Y=(-0,47)*1,3+7,25=6,63)
- regresia multipla – se realizeaza
predictia unei variabile dependente (criteriu) in dunctie de mai
multe variabile independente (predictori):
Se urmareste predictia notei pe
semestrul I a unor studenti la Informatica pe baza unei Baterii de
teste, care cuprinde urmatoarele probe:
Comprehensiune Verbala (CV);
Rationament (RA);
Operatori Logici (OL);
Aptitudine Numerica (AN);
Diagrame (DG)
Matricea de corelatii intre probe
(predictori) + corelatiile probelor cu media pe sem I (criteriul):
|
CV
|
RA
|
OL
|
AN
|
DG
|
CV
|
1
|
0.775
|
0.67
|
0.625
|
0.733
|
|
|
0
|
0
|
0
|
0
|
|
47
|
47
|
47
|
47
|
47
|
RA
|
0.775
|
1
|
0.6
|
0.571
|
0.593
|
|
0
|
|
0
|
0
|
0
|
|
47
|
47
|
47
|
47
|
47
|
OL
|
0.67
|
0.6
|
1
|
0.489
|
0.608
|
|
0
|
0
|
|
0
|
0
|
|
47
|
47
|
47
|
47
|
47
|
AN
|
0.625
|
0.571
|
0.489
|
1
|
0.295
|
|
0
|
0
|
0
|
|
0.044
|
|
47
|
47
|
47
|
47
|
47
|
DG
|
0.733
|
0.593
|
0.608
|
0.295
|
1
|
|
0
|
0
|
0
|
0.044
|
|
|
47
|
47
|
47
|
47
|
47
|
medie
semestrul 1
|
0.667
|
0.626
|
0.369
|
0.447
|
0.655
|
Algoritmul lui Aitken pentru aflarea
coeficientilor beta redusi:
|
1
(CV)
|
2
(RA)
|
3
(OL)
|
4
(AN)
|
5
(DG)
|
6
|
7
|
8
|
9
|
10
|
|
1
|
1.00
|
0.82
|
0.86
|
0.75
|
0.83
|
1.00
|
0.00
|
0.00
|
0.00
|
0.00
|
|
2
|
0.82
|
1.00
|
0.63
|
0.60
|
0.69
|
0.00
|
1.00
|
0.00
|
0.00
|
0.00
|
|
3
|
0.86
|
0.63
|
1.00
|
0.84
|
0.78
|
0.00
|
0.00
|
1.00
|
0.00
|
0.00
|
|
4
|
0.75
|
0.60
|
0.84
|
1.00
|
0.64
|
0.00
|
0.00
|
0.00
|
1.00
|
0.00
|
|
5
|
0.83
|
0.69
|
0.78
|
0.64
|
1.00
|
0.00
|
0.00
|
0.00
|
0.00
|
1.00
|
|
6
|
0.67
|
0.63
|
0.37
|
0.45
|
0.66
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
|
7
|
(3.03)
|
0.33
|
-0.07
|
-0.02
|
0.01
|
-0.82
|
1.00
|
0.00
|
0.00
|
0.00
|
1-2
|
8
|
|
1.00
|
-0.22
|
-0.05
|
0.03
|
-2.48
|
3.03
|
0.00
|
0.00
|
0.00
|
|
9
|
|
-0.07
|
0.27
|
0.20
|
0.07
|
-0.86
|
0.00
|
1.00
|
0.00
|
0.00
|
1-3
|
10
|
|
-0.02
|
0.20
|
0.44
|
0.02
|
-0.75
|
0.00
|
0.00
|
1.00
|
0.00
|
1-4
|
11
|
|
0.01
|
0.07
|
0.02
|
0.31
|
-0.83
|
0.00
|
0.00
|
0.00
|
1.00
|
1-5
|
12
|
|
0.08
|
-0.20
|
-0.05
|
0.10
|
-0.67
|
0.00
|
0.00
|
0.00
|
0.00
|
1-6
|
13
|
|
(4.01)
|
0.25
|
0.20
|
0.07
|
-1.04
|
0.22
|
1.00
|
0.00
|
0.00
|
8-9
|
14
|
|
|
1.00
|
0.79
|
0.29
|
-4.17
|
0.90
|
4.01
|
0.00
|
0.00
|
|
15
|
|
|
0.20
|
0.44
|
0.02
|
-0.79
|
0.05
|
0.02
|
1.00
|
0.00
|
8-10
|
16
|
|
|
0.07
|
-1.04
|
-0.79
|
-0.81
|
-0.03
|
0.00
|
0.00
|
1.00
|
8-11
|
17
|
|
|
-0.18
|
-0.05
|
0.10
|
-0.47
|
-0.24
|
0.00
|
0.00
|
0.00
|
8-12
|
18
|
|
|
(3.52)
|
0.28
|
-0.04
|
0.03
|
-0.13
|
-0.77
|
1.00
|
0.00
|
14-15
|
19
|
|
|
|
1.00
|
-0.13
|
0.10
|
-0.44
|
-2.71
|
3.52
|
0.00
|
|
20
|
|
|
|
-0.04
|
-0.81
|
-0.51
|
-0.09
|
-0.29
|
0.00
|
1.00
|
14-16
|
21
|
|
|
|
0.10
|
0.15
|
-1.24
|
-0.08
|
0.74
|
0.00
|
0.00
|
14-17
|
22
|
|
|
|
(-0,16)
|
-0.82
|
-0.51
|
-0.11
|
-0.38
|
0.13
|
1.00
|
19-20
|
23
|
|
|
|
|
1.00
|
0.62
|
0.13
|
0.47
|
-0.16
|
-1.22
|
|
24
|
|
|
|
|
0.16
|
-1.25
|
-0.03
|
1.00
|
-0.34
|
0.00
|
19-21
|
25
|
|
|
|
|
|
-1.35
|
-0.06
|
0.92
|
-0.31
|
0.20
|
23-24
|
|
|
|
|
|
|
β1
|
β2
|
β3
|
β4
|
β5
|
|
R = 0,984