Home - qdidactic.com
Didactica si proiecte didacticeBani si dezvoltarea cariereiStiinta  si proiecte tehniceIstorie si biografiiSanatate si medicinaDezvoltare personala
referate sanatateSanatatea depinde de echilibrul dintre alimentatie si activitatea fizica - Hipocrate





Medicina Medicina veterinara Muzica Psihologie Retete Sport


Medicina


Qdidactic » sanatate & sport » medicina
Suprafata dorsala a miinii



Suprafata dorsala a miinii


SUPRAFATA DORSALA A MIINII


Tegumentul de pe partea dorsala a mainii este subtire spre deosebire de cel de pe fata palmara si nu este ancorat de fascia profunda subjacenta si prin aceasta se edematiaza usor. (edemul fetei dorsale constituie un semn de infectie profunde palmara).

Sub tegument exista o retea venoasa bogata, care reprezinta originea venelor cefalica si bazilica. Profund fata de vene se afla tendoanele extensorilor, mai bine evidentiate cand mana si degetele sunt in extensie.

Cu exceptia muschilor interososi dorsali, care vor fi descrisi odata cu suprafata palmara a mainii, nu exista alti muschi intrinseci ai dosului mainii, toate tendoanele din aceasta regiune apartinand muschilor extensori ai antebratului. La trecerea peste articulatiile carpiene, toate aceste tendoane sunt invelite de teci sinoviale si atasate de planul osos profund prin retinaculul extensorilor. (fig.76). Traiectul acestor tendoane este urmatorul:

- abductorul lung al policelui si extensorul scurt al policelui trec printr-o incizura de pe marginea laterala a extremitatii inferioare a fetei dorsale a radiusului. Coborand peste masivul carpian, cei doi muschi formeaza marginea laterala a tabacherei anatomice. Abductorul policelui se insera pe dosul bazei primului metacarpian.

- lungul si scurtul extensor radial al carpului sunt atasati de suprafetele dorsale ale bazelor metacarpienelor 2 si 3.

- extensorul lung al policelui este separat de muschii precedenti printr-un tubercul palpabil la nivelul extremitatii distale a radiusului. Muschiul se roteste lateral peste lungul si scurtul extensor radial ai carpului  pentru a forma marginea mediala a tabacherei anatomice.

- extensorul degetelor si extensorul indexului  sunt inveliti de aceeasi teaca sinoviala.

- extensorul degetului mic trece peste articulatia radioulnara distala invelit intr-o teaca sinoviala proprie.

- extensorul ulnar al carpului  trece peste capul ulnei si se insera pe partea mediala a bazei metacarpianului cinci.




Retinaculul extensorilor


Este o banda fibroasa puternica intinsa oblic dinspre supero-lateral spre infero-medial, intre marginea laterala a radiusului si doua dintre carpienele proximale - piramidalul si pisiformul.(fig.76).


Tendoanele extensorilor lungi la nivelul mainii


Insertia distala a tendoanelor extensorilor degetelor a fost deja mentionata, revenim insa la o detaliere a anumitor aspecte. Pozitia acestora pe suprafata dorsala a mainii favorizeaza extensiunea falangelor, a degetelor pe mana si a mainii pe antebrat.

Tendonul extensorului lung al policelui se insera pe suprafata dorsala a bazei falangei distale a policelui, in jurul careia este insotit si de tendoanele abductorului scurt al policelui, lateral si al adductorul policelui, medial. Acest muschi extinde policele si mana.

Tendonul extensorului scurt al policelui este atasat de dosul bazei falangei proximale a policelui si este extensor al policelui.

Muschiul extensor al degetelor are cate un tendon pentru fiecare dintre degetele doi - cinci. Deasupra fiecarei articulatii metacarpofalangiene tendoanele formeaza expansiunile digitale dorsale. Acestea au forma triunghiulara cu baza proximala si varful distal. Expansiunile digitale dorsale ale indexului si degetului mic sunt unite cu tendoanele extensorilor indexului si auricularului. Pe partile laterale ale acestor expansiuni se ataseaza muschii lombricali si interososi. Expansiunea se ingusteaza inspre falanga proximala si devine partial separata in trei bandelete. Bandeleta centrala se insera pe suprafata dorsala a bazei falangei mijlocii, iar cele laterale se unesc deasupra corpului falangei mijlocii si se insera pe suprafata  dorsala a bazei falangei distale. (fig.77).


Cheek CC, Paterson RL, Proffit WR. Response of erupting human second premolars to blood flow changes. Arch Oral Biol. :851-858. [PubMed]

Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, et al. Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol. :295-305. [PMC free article] [PubMed]

Cielinski MJ, Jolie M, Wise G, Ando D, Marks SJ. Colony-stimulating factor-1 (CSF-1) is a potent stimulator of tooth eruption in the rat. In: Davidovitch Z, editor. The biological mechanisms of tooth eruption, resorption and replacement by implants. EBSCO Media; Birmingham, AL: 1994. pp. 429-436.

Cielinski MJ, Jolie M, Wise GE, Marks SC., Jr The contrasting effects of colony-stimulating factor-1 and epidermal growth factor on tooth eruption in the rat. Connect Tissue Res. :165-169. [PubMed]

Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. :278-284. [PubMed]

Crotti T, Smith MD, Hirsch R, Soukoulis S, Weedon H, Capone M, et al. Receptor activator NF kappaB ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis. J Periodontal Res. :380-387. [PubMed]

d'Ortho MP, Will H, Atkinson S, Butler G, Messent A, Gavrilovic J, et al. Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur J Biochem. :751-757. [PubMed]

D'Souza RN, Aberg T, Gaikwad J, Cavender A, Owen M, Karsenty G, et al. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development. :2911-2920. [PubMed]

Darnay BG, Ni J, Moore PA, Aggarwal BB. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem. :7724-7731. [PubMed]

Deguchi T, Takeshita N, Balam TA, Fujiyoshi Y, Takano-Yamamoto T. Galanin-immunoreactive nerve fibers in the periodontal ligament during experimental tooth movement. J Dent Res. :677-681. [PubMed]

Denhardt DT, Guo X. Osteopontin: a protein with diverse functions. FASEB J. :1475-1482. [PubMed]

Dobbins DE, Sood R, Hashiramoto A, Hansen CT, Wilder RL, Remmers EF. Mutation of macrophage colony stimulating factor (Csf1) causes osteopetrosis in the tl rat. Biochem Biophys Res Commun. :1114-1120. [PubMed]

Dolce C, Vakani A, Archer L, Morris-Wiman JA, Holliday LS. Effects of echistatin and an RGD peptide on orthodontic tooth movement. J Dent Res. :682-686. [PubMed]

Domon S, Shimokawa H, Yamaguchi S, Soma K. Temporal and spatial mRNA expression of bone sialoprotein and type I collagen during rodent tooth movement. Eur J Orthod. :339-348. [PubMed]

Drevensek M, Sprogar S, Boras I, Drevensek G. Effects of endothelin antagonist tezosentan on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop. :555-558. [PubMed]

Endlich N, Endlich K. Stretch, tension and adhesion-adaptive mechanisms of the actin cytoskeleton in podocytes. Eur J Cell Biol. :229-234. [PubMed]

Esashika M, Kaneko S, Yanagishita M, Soma K. Influence of orthodontic forces on the distribution of proteoglycans in rat hypofunctional periodontal ligament. J Med Dent Sci. :183-194. [PubMed]

Felix R, Cecchini MG, Hofstetter W, Elford PR, Stutzer A, Fleisch H. Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J Bone Miner Res. :781-789. [PubMed]

Forwood MR. Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res. :1688-1693. [PubMed]

Forwood MR, Turner CH. Skeletal adaptations to mechanical usage: results from tibial loading studies in rats. Bone. (4 Suppl):197S-205S. [PubMed]

Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, et al. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. :3482-3496. [PMC free article] [PubMed]

Frost HM. Cybernetic aspects of bone modeling and remodeling, with special reference to osteoporosis and whole-bone strength. Am J Hum Biol. :235-248. [PubMed]

Frost HM. A 2003 update of bone physiology and Wolff's Law for clinicians. Angle Orthod. :3-15. [PubMed]

Fujihara S, Yokozeki M, Oba Y, Higashibata Y, Nomura S, Moriyama K. Function and regulation of osteopontin in response to mechanical stress. J Bone Miner Res. :956-964. [PubMed]

Fukushima H, Kajiya H, Takada K, Okamoto F, Okabe K. Expression and role of RANKL in periodontal ligament cells during physiological root-resorption in human deciduous teeth. Eur J Oral Sci. :346-352. [PubMed]

Galley SA, Michalek DJ, Donahue SW. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone. J Biomech. :2026-2033. [PubMed]

Gao Q, Zhang S, Jian X, Zeng Q, Ren L. Expression of epidermal growth factor and epidermal growth factor receptor in rat periodontal tissues during orthodontic tooth movement. Zhonghua Kou Qiang Yi Xue Za Zhi. :294-296. [PubMed]

Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL. Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res. :1522-1535. [PubMed]

Gowgiel JM. Eruption of irradiation-produced rootless teeth in monkeys. J Dent Res.

Grier RL, IV, Wise GE. Inhibition of tooth eruption in the rat by a bisphosphonate. J Dent Res. :8-15. [PubMed]

Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. :443-448. [PubMed]

Guajardo G, Okamoto Y, Gogen H, Shanfeld JL, Dobeck J, Herring AH, et al. Immunohistochemical localization of epidermal growth factor in cat paradental tissues during tooth movement. Am J Orthod Dentofacial Orthop. :210-219. [PubMed]

Hagino H, Kuraoka M, Kameyama Y, Okano T, Teshima R. Effect of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the cortical bone response to mechanical loading. Bone. :444-453. [PubMed]

Hall M, Masella R, Meister M. PDL neuron-associated neurotransmitters in orthodontic tooth movement: identification and proposed mechanism of action. Today's FDA.

Hamaya M, Mizoguchi I, Sakakura Y, Yajima T, Abiko Y. Cell death of osteocytes occurs in rat alveolar bone during experimental tooth movement. Calcif Tissue Int. :117-126. [PubMed]

Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev. :685-740. [PubMed]

Hasegawa T, Yoshimura Y, Kikuiri T, Yawaka Y, Takeyama S, Matsumoto A, et al. Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodontal ligament cells. J Periodontal Res. :405-411. [PubMed]

Häusler KD, Horwood NJ, Chuman Y, Fisher JL, Ellis J, Martin TJ, et al. Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res. :1873-1881. [PubMed]

Hayashi H, Konoo T, Yamaguchi K. Intermittent 8-hour activation in orthodontic molar movement. Am J Orthod Dentofacial Orthop. :302-309. [PubMed]

Hazenberg JG, Freeley M, Foran E, Lee TC, Taylor D. Microdamage: a cell transducing mechanism based on ruptured osteocyte processes. J Biomech. :2096-2103. [PubMed]

Howard PS, Kucich U, Taliwal R, Korostoff JM. Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodontal Res. :500-508. [PubMed]

Hsieh MH, Nguyen HT. Molecular mechanism of apoptosis induced by mechanical forces. Int Rev Cytol. :45-90. [PubMed]

Huang H, Wise GE. Delay of tooth eruption in null mice devoid of the type I IL-1R gene. Eur J Oral Sci. :297-302. [PubMed]

Hughes-Fulford M. Signal transduction and mechanical stress. Sci STKE.

Igarashi K, Mitani H, Adachi H, Shinoda H. Anchorage and retentive effects of a bisphosphonate (AHBuBP) on tooth movements in rats. Am J Orthod Dentofacial Orthop. :279-289. [PubMed]

Iizuka T, Cielinski M, Aukerman SL, Marks SC., Jr The effects of colony-stimulating factor-1 on tooth eruption in the toothless (osteopetrotic) rat in relation to the critical periods for bone resorption during tooth eruption. Arch Oral Biol. :629-636. [PubMed]

Ikeda T, Kasai M, Utsuyama M, Hirokawa K. Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus. Endocrinology. :1419-1426. [PubMed]

Ingman T, Apajalahti S, Mantyla P, Savolainen P, Sorsa T. Matrix metalloproteinase-1 and -8 in gingival crevicular fluid during orthodontic tooth movement: a pilot study during 1 month of follow-up after fixed appliance activation. Eur J Orthod. :202-207. [PubMed]

Insoft M, King GJ, Keeling SD. The measurement of acid and alkaline phosphatase in gingival crevicular fluid during orthodontic tooth movement. Am J Orthod Dentofacial Orthop. :287-296. [PubMed]

Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med. :1285-1289. [PubMed]

Ishijima M, Tsuji K, Rittling SR, Yamashita T, Kurosawa H, Denhardt DT, et al. Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficient mice. J Bone Miner Res. :661-667. erratum in J Bone Miner Res 18:1558, 2003. [PubMed]

Iwasaki LR, Haack JE, Nickel JC, Reinhardt RA, Petro TM. Human interleukin-1 beta and interleukin-1 receptor antagonist secretion and velocity of tooth movement. Arch Oral Biol. :185-189. [PubMed]

Jager A, Zhang D, Kawarizadeh A, Tolba R, Braumann B, Lossdorfer S, et al. Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. Eur J Orthod. :1-11. [PubMed]

Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, et al. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. :767-773. [PubMed]

Jonsdottir SH, Giesen EB, Maltha JC. Biomechanical behaviour of the periodontal ligament of the beagle dog during the first 5 hours of orthodontic force application. Eur J Orthod. :547-552. [PubMed]

Kaku M, Niida S, Kawata T, Maeda N, Tanne K. Dose- and time-dependent changes in osteoclast induction after a single injection of vascular endothelial growth factor in osteopetrotic mice. Biomed Res.

Kaku M, Kohno S, Kawata T, Fujita I, Tokimasa C, Tsutsui K, et al. Effects of vascular endothelial growth factor on osteoclast induction during tooth movement in mice. J Dent Res. :1880-1883. [PubMed]

Kanzaki H, Chiba M, Shimizu Y, Mitani H. Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res. :887-891. [PubMed]

Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res. :210-220. [PubMed]

Kanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H. Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res. :920-925. [PubMed]

Katsumi A, Naoe T, Matsushita T, Kaibuchi K, Schwartz MA. Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J Biol Chem. :16546-16549. [PubMed]

Kawarizadeh A, Bourauel C, Zhang D, Gotz W, Jager A. Correlation of stress and strain profiles and the distribution of osteoclastic cells induced by orthodontic loading in rat. Eur J Oral Sci. :140-147. [PubMed]

Keeling SD, King GJ, McCoy EA, Valdez M. Serum and alveolar bone phosphatase changes reflect bone turnover during orthodontic tooth movement. Am J Orthod Dentofacial Orthop. :320-326. [PubMed]

Kehoe MJ, Cohen SM, Zarrinnia K, Cowan A. The effect of acetaminophen, ibuprofen, and misoprostol on prostaglandin E2 synthesis and the degree and rate of orthodontic tooth movement. Angle Orthod. :339-349. [PubMed]

King GJ, Keeling SD, McCoy EA, Ward TH. Measuring dental drift and orthodontic tooth movement in response to various initial forces in adult rats. Am J Orthod Dentofacial Orthop. 1991a; :456-465. [PubMed]

King GJ, Keeling SD, Wronski TJ. Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone. 1991b; :401-409. [PubMed]

King GJ, Latta L, Rutenberg J, Ossi A, Keeling SD. Alveolar bone turnover in male rats: site- and age-specific changes. Anat Rec. :321-328. [PubMed]

Kitahara Y, Suda N, Kuroda T, Beck F, Hammond VE, Takano Y. Disturbed tooth development in parathyroid hormone-related protein (PTHrP)-gene knockout mice. Bone. :48-56. [PubMed]

Klein-Nulend J, Bacabac RG, Mullender MG. Mechanobiology of bone tissue. Pathol Biol (Paris) :576-580. [PubMed]

Knothe Tate ML, Steck R, Forwood MR, Niederer P. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J Exp Biol. :2737-2745. [PubMed]

Kohno S, Kaku M, Kawata T, Fujita T, Tsutsui K, Ohtani J, et al. Neutralizing effects of an anti-vascular endothelial growth factor antibody on tooth movement. Angle Orthod. :797-804. [PubMed]

Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development, and lymph-node organogenesis. Nature. :315-323. [PubMed]

Konoo T, Kim YJ, Gu GM, King GJ. Intermittent force in orthodontic tooth movement. J Dent Res. :457-460. [PubMed]

Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. (469):e1-32. [PubMed]

Kukita T, Wada N, Kukita A, Kakimoto T, Sandra F, Toh K, et al. RANKL-induced DC-STAMP is essential for osteoclastogene

Vascularizatia fetei dorsale a mainii


Artera radiala (descrisa detaliat la regiunea palmara) apare pe o scurta distanta pe dosul mainii. Ramura dorsala a carpului impreuna cu ramura dorsala carpiana a arterei ulnare formeaza o arcada arteriala pe fata dorsala a regiunii carpiene, de la nivelul careia pleaca arterele metacarpiene dorsale. Acestea, la randul lor dau arterele digitale dorsale pentru marginile degetelor, cu exceptia policelui si a marginii laterale a indexului. Aceste doua teritorii sunt vascularizate de artere care pornesc direct din artera radiala, inainte ca aceasta sa revina pe fata palmara a mainii.(fig.78). La formarea arcadei carpiene dorsale contribuie si artera interosoasa anterioara, care a strabatut membrana interosoasa, dar si ramurile perforante ale arterelor metacarpiene palmare, care se anastomozeaza cu arterele metacarpiene dorsale. Arcada dorsala si ramurile sale sunt dispuse profund fata de tendoanele muschilor extensori.


Inervatia fetei dorsale a mainii


Pe fata dorsala a mainii nu exista muschi intrinseci, iar ramurile locale ale nervilor radial si ulnar inerveaza tegumentul fetei dorsale a mainii si degetelor.

Ramura superficiala a nervului radial paraseste treimea inferioara a antebratului pe sub tendonul muschiului brahioradial. Apoi, merge spre dosul mainii unde se divide in nervii digitali dorsali ai policelui, indexului, mediusului si jumatatii laterale a inelarului.

Intr-o maniera asemanatoare, ramura dorsala a nervului ulnar trece pe partea interna a dosului mainii, unde prin nervii digitali dorsali inerveaza jumatatea mediala a inelarului si degetul mic.

- nervul radial inerveaza tegumentul jumatatii laterale a dosului mainii, precum si marginile adiacente ale primelor sapte degete la nivelul falangelor proximale si medii;

- nervul ulnar inerveaza tegumentul jumatatii mediale a mainii, precum si marginile adiacente ale ultimelor trei degete in totalitate;

- nervul median inerveaza marginile adiacente ale primelor sapte degete la nivelul falangei distale. (fig.79).




Contact |- ia legatura cu noi -| contact
Adauga document |- pune-ti documente online -| adauga-document
Termeni & conditii de utilizare |- politica de cookies si de confidentialitate -| termeni
Copyright © |- 2025 - Toate drepturile rezervate -| copyright