Home - qdidactic.com
Didactica si proiecte didacticeBani si dezvoltarea cariereiStiinta  si proiecte tehniceIstorie si biografiiSanatate si medicinaDezvoltare personala
referate didacticaScoala trebuie adaptata la copii ... nu copiii la scoala





Biologie Botanica Chimie Didactica Fizica Geografie
Gradinita Literatura Matematica


Matematica


Qdidactic » didactica & scoala » matematica
Integrarea functiilor rationale



Integrarea functiilor rationale


INTEGRAREA FUNCTIILOR RATIONALE


Definitie: O functie f:I→R , I interval, se numeste rationala daca R(x)= unde f,g sunt functii polinomiale.

Daca grad f grad g, atunci se efectueaza impartirea lui f la g f=gq+r, 0grad r<grad g si deci




1 Ex.


2 Ex


3 Ex


4 Ex


5*


Ex.


6

Ex



Ex


7. Ex.



8*.



Ex


Sa se calculeze


1. 2. 3. 4.


5. 6.   7. 8.


9. 10. 11. 12.


13. 14. 15. 16.


17. 18. 19. 20.


21. 22. 23. 24. 25. 26. 27. 28.

29.


Rezolvari.


23.  Notamcu t


26. Notam pecu t 4dx=dt


27. Notam pe x-1 cu t x=t+1 dx=dt




=


28. Notam pe x-1cu t



Sa se calculeze integralele folosind descompunerea in fractii rationale simple.


30. 31. 32. 33.


34. 34. 35. 36.


37. 38. 39. 40.


41. 42. 43. 44.

45.





Contact |- ia legatura cu noi -| contact
Adauga document |- pune-ti documente online -| adauga-document
Termeni & conditii de utilizare |- politica de cookies si de confidentialitate -| termeni
Copyright © |- 2025 - Toate drepturile rezervate -| copyright