Home - qdidactic.com
Didactica si proiecte didacticeBani si dezvoltarea cariereiStiinta  si proiecte tehniceIstorie si biografiiSanatate si medicinaDezvoltare personala
referate sanatateSanatatea depinde de echilibrul dintre alimentatie si activitatea fizica - Hipocrate





Medicina Medicina veterinara Muzica Psihologie Retete Sport


Medicina


Qdidactic » sanatate & sport » medicina
Fiziologia patologica a miscarii dentare



Fiziologia patologica a miscarii dentare


FIZIOLOGIA PATOLOGICA A MISCARII DENTARE


Miscarea dentara ortodontica este un proces care combina raspunsurile fiziologice si patologice la aplicarea fortelor externe. Miscarea dentara ortodontica (King si colab., 1991a) este insotita de o leziune reversibila minora a tesuturilor de sustinere ale dintelui, existand o adaptare fiziologica a osului alveolar si ligamentului parodontal la solicitarea mecanica. Prin urmare, mecanismele relevante inflamatorii trebuie sa fie luate in considerare impreuna cu mecanotransductia scheletala pentru o intelegere deplina a miscarii dentare ortodontice.

Tabloul clinic al miscarii dentare ortodontice releva desfasurarea a trei faze: o deplasare dentara initiala, aproape instantanee; o intarziere, in care nu are loc nici o miscare vizibila si o perioada de miscare dentara liniara. Fortele aplicate creaza tensiuni in tesuturile de sustinere ale dintelui care se manifesta aproape imediat si care pot fi clasificate ca fiind compresiune si tractiune. In absenta posibilitatii transformarii acestei solicitari in date care sa permita masurarea ei directa, au fost create diferite modele de elemente finite pentru a le descrie. Analiza elementelor finite de transfer al sarcinii de la dinte prin intermediul ligamentului parodontal la nivelul osului alveolar trebuie sa tina cont de proprietatile fizice si morfologia parodontiului. Ligamentul parodontal este cunoscut a fi un material non-linear vasco-elastic, dar modele elementelor finite folosite in ortodontie asociaza proprietatile ligamentului parodontal unui corp omogen, liniar elastic, izotrop si continuu. De asemenea, nu sunt facute ajustari pentru diferentele din micromorfologia acestuia. Rezultatele studiilor elementelor finite care incearca sa tina seama de acest raport dintre incarcare (solicitare) - efect asupra parodontiului nu pot fi explicate in termenii simpli de compresie si de tensiune aparute de-a lungul directiei de incarcare. De asemenea, tensiunea pare a fi mult mai frecventa decat compresia (Cattaneo si colab, 2005.). Cu toate acestea, deoarece terminologia presiune-tensiune este atat de raspandita in literatura de specialitate si, in general, poate servi ca un mijloc convenabil pentru a distinge intre diferitele procese ce insotesc deplasarea dentara ortodontica, va fi utilizata aici.

Evenimentul initial inflamator, din site-urile de compresie este cauzat de constrictia vaselor mici din ligamentul parodontal, care este urmata de necroze focale, cunoscute datorita aspectului lor histologic ca hialinizare si de hiperemie compensatorie in ligamentul parodontal adiacent (Murrell si colab., 1996) si vasele pulpare (Kvinnsland si colab, 1989.). Aceste zone necrotice elibereaza diversi chemo-receptori (Lindskog si Lilja, 1983) care atrag acid-fosfataza-pozitiva tartrat-rezistenta din celulele gigantice, fagocitare, multi-nucleate, de la periferia ligamentului parodontal necrotic (Brudvik si Rygh, 1994a, b). Aceste celule resorb ligamentul parodontal necrotic, precum si osul alveolar subiacent si cementul. Osteoclastele sunt recrutate din spatiile medulare adiacente (Rody si colab, 2001.). Pana cand aceste celule pot fi recrutate si zonele necrotice indepartate, miscarea dentara este impiedicata, rezultatul clinic fiind acela al unei perioade de intarziere. Aceasta este urmata de depunerea de cement nou (Brudvik si Rygh, 1995;. Casa si colab, 2006), dentina secundara (Nixon si colab , 1993.), si os de neoformatie (King si colab, 1991b). in vecinatatea zonelor de resorbtie.



Exista numeroase dovezi care sugereaza ca mecanismele neurovasculare joaca un rol important in miscarea dentara, prin dezvoltarea unei reactii inflamatorii. Cresterea neurotransmitatorilor in ligamentul parodontal, a CGRP (Kvinnsland si Kvinnsland, 1990) si substanta P (Nicolay si colab, 1990.), poate persista perioade indelungate, dupa deplasarea dentara ortodontica (Norevall si colab, 1995, 1998.). Mai mult decat atat, aceste componente au capacitatea de a produce vasodilatatie si permeabilitate vasculara crescuta, insotita de proliferarea celulelor endoteliale si a fibroblastilor (Hall si colab., 2001), precum si extravazarea de leucocite (Toms si colab, 2000.). Distributia si intensitatea colorarii imunoreactive pentru alti factori bioactivi asociati fibrelor nervoase din ligamentul parodontal (Saito si colab, 1993;. Deguchi si colab, 2003.) si endoteliului (Lew si colab, 1989;. Lew, 1989; Sims, 1999; Drevensek si colab., 2006), , se coreleaza de asemenea fie cu remodelarea de raspuns a tesuturilor, indusa mecanic, fie cu miscarea dentara ortodontica. De asemenea, diferiti alti factori asociati fibrelor nervoase alveolare inferiore amana cresterea fluxului sanguin in ligamentul parodontal dupa aplicarea fortei (Vandevska-Radunovic si colab, 1998.).

Eliberarea de citokine pro-inflamatorii si enzime lizozomale care promoveaza resorbtia tesuturilor din zonele de compresie este bine documentata. Prostaglandinele, IL-1, IL-6, TNFα si RANKL (receptor activator of nuclear factor kappa B ligand) au toate un nivel crescut in ligamentul parodontal in timpul deplasarii dentare (Yamaguchi si Kasai, 2005). Cresteri ale enzimelor lizozomale, fosfatazei acide, fosfatazei acide tartrat-rezistente (Lilja si colab, 1983, 1984;.. Keeling si colab, 1993) si a catepsinei B ( Yamaguchi si colab, 2004) au fost, de asemenea, localizate in zonele de compresie, sugerandu-se ca acestea pot juca un rol decisiv in timpul deplasarii dentare ortodontice in procesul de degradare a tesuturilor moi si dure, prin cresterea numarului de macrofage si dendritelor de legatura celulare (Vandevska-Radunovic si colab, 1997.).

Zonele de tensiune generate ortodontic, in general, au fost caracterizate ca fiind in primul rand osteogene, fara o componenta semnificativa inflamatorie. Cu toate acestea, exista dovezi ca raspunsurile inflamatorii la tensiuni pot fi dependente de solicitare (intindere) , deoarece tractiunile de magnitudine mica sunt antiinflamatorii si induc semnale anabolice dependente de magnitudine in celulele osteoblastice, legate de ligamentul parodontal, culminand cu reglarea transcriptiei genei inflamatorii (Long si colab, 2001). In schimb, tractiunile mari actioneaza ca stimuli proinflamatorii si cresc eliberarea citokinelor inflamatorii (Long si colab, 2002.). Aceasta constatare a fost confirmata recent printr-un model de miscare dentara in care s-a presupus ca tractiunea usoara este insotita de absenta marcanta a IL-1α si COX-2, in timp ce compresia sau intinderile (tractiunile) mari de o crestere a reglarii IL -1α si COX-2 (prezentat de Madhavan si colab, 2008). Dovezile morfologice de dezagregare celulara din zonele de tensiune ale ligamentului parodontal aparute in cursul deplasarilor dentare au fost descrise, de asemenea, dupa numai 5 minute de solicitare, sugerandu-se implicarea in continuare a unui mecanism inflamatoriu (Orellana si colab, 2002; Orellana-Lezcano si colab, 2005). In ciuda acestui fapt, mecanismul de osteogeneza din zonele de tensiune din miscarea dentara nu este bine inteles, concluzii rezonabile putand fi insa trase folosind modele diferite de mecanotransductie.

O problema care pare paradoxala, la inceput, este observatia ca zonele de compresie din miscarea dentare ortodontice sunt in primul rand resorbtive, in timp ce zonele de tractiune sunt osteogene. Aceast lucru pare contrar datelor din literatura cu privire la solicitarile mecanice osoase, care descriu site-uri de solicitare (incarcare) ca fiind site-uri osteogene, iar pe cele de descarcare ca fiind resorbtive (Frost, 2004). Exista doua explicatii posibile pentru aceste diferente. In primul rand, zonele de compresie au in mod clar o componenta de injurie tisulara, suprapusa peste transductia fiziologica, cu creerea de produse inflamatorii care au in primul rand un rol resorbtiv, stimuland celulele sa elimine tesutul lezat. In al doilea rand, resorbtia din zonele de comprimare din miscarea dentara ar putea fi perceputa ca rezultat al scaderii solicitarii (intinderii) normale din ligamentul parodontal functional, in timp ce osteogeneza din zonele de tensiune ar putea fi o reflectare a incarcarii fibrelor principale ale ligamentului parodontal (Melsen, 2001 ). Aceasta din urma ar putea fi, de asemenea, insotita de intinderi (solicitari) ale procesului alveolar transmise prin fibrele principal ale ligamentului parodontal sau datorate actiunii (presiunii) directe a radacinii dentare asupra osului alveolar.

Exista o mare variabilitate in raspunsul tesuturilor ligamentui parodontal la deplasarea dentara. Acest lucru se poate datora nu numai diferentelor in semnalele biomecanice, dar si diferentelor specifice care tin de organismul gazda, cum ar fi ritmurile diurne, ocluzia (Miyoshi si colab, 2001.) (Esashika si colab., 2003), metabolismul sistemic (Verna si Melsen, 2003 ), varsta (King si colab, 1995; Kyomen si Tanne, 1997; Ren si colab, 2003), sau variatia normala in desenul trabecular osos.


CERINTELE DEPLASARII DENTARE ORTODONTICE:

Rolul ligamentului parodontal in deplasarile dentare:

Anchiloza dentara si implantele pot  servi pentru a demonstra rolul esential al ligamentului parodontal in miscarea dentara. Dintii cu anchiloza prezinta leziuni focale caracterizate prin prezenta de punti osoase care elimina ligamentul parodontal in aceste zone. In mod similar, in cazul implantelor cu sau fara osteointegrare lipseste ligamentul parodontal. In ambele cazuri, dintii nu raspund la miscarea dentara ortodontica. O consecinta a acestor constatari o constituie acceptarea actuala pe scara larga de catre ortodonti a miniimplantelor ca dispozitive temporare de ancoraj. De asemenea, explica de ce dintii temporari cu anchiloza par sa se scufunde in timp ce dintii adiacenti continua sa se adapteze la cresterea faciala verticala.

Rolul specific al ligamentului parodontal in miscarea dentara nu este bine inteles, dar prin natura lui unica biomecanica, celulara si moleculara este fara indoiala important. Dintr-o perspectiva biomateriala, ligamentul parodontal este o substanta complexa, armata cu fibre care raspunde la forta intr-o maniera vascoelastica si non-lineara (Jonsdottir si colab, 2006.). Acest raspuns este caracterizat printr-o deplasare instantanee, urmata de o deplasare mai treptata care atinge un maximum dupa 5 ore (van Driel si colab, 2000.), sugerand ca compartimentele lichide din ligamentul parodontal pot juca un rol important in transmiterea si amortizare fortelor care actioneaza asupra dintilor. Solicitarea (intinderea) care i-a nastere in ligamentul parodontal prin aplicarea fortei are in mod clar consecinte biologice pentru tesut in sine si, eventual, pentru alte tesuturi dentare de sprijin (de exemplu, osul alveolar si cement).

Celulele ligamentului parodontal raspund la cresterea fortei prin proliferarea si apoptozei celulare. Aceste doua procese concurente par sa controleze populatii diferite de celule din ligamentul parodontal si reflecta o biomecanica specifica (Mabuchi si colab, 2002.).

Componentele majoritare fibroase ale matricei extracelulare a ligamentului parodontal (colagen, tropoelastina si fibronectina) sunt consecinta adaptarii la aplicarea fortei (Howard si colab, 1998;. Redlich si colab, 2004a.). Metaloproteinazele matricei (MMPs) si inhibitorii lor specifici, TIMPs (tissue inhibitors of metalloproteinases), par sa actioneze intr-un mod coordonat pentru a regla remodelarea colagenului. Nivelurile de exprimare in ligamentul parodontal de MMP-2, 8, 9, 13 si TIMPs 1-3 cresc tranzitoriu in timpul miscarii dentare ortodontice. Cu toate acestea, aceste gene au modele diferite de exprimare in zonele de compresie si de tensiune, sugerand ca remodelarea colagenului este reglata diferentiat functie de mecanica (Howard si colab, 1998;. Takahashi si colab, 2003, 2006.). Aceasta concluzie este sprijinita de observatiile care arata ca tensiunea previne degradarea matricei prin inhibarea MMP-1 (Arnoczky si colab, 2004), in timp ce reducerea tensiunii imbunatateste resorbtia matricei extracelulare (Von den Hoff, 2003). Expresia consolidarii MMP-1 in fibroblastele ligamentului parodontal poate fi, de asemenea, rezultatul efectului direct al fortei asupra genelor (Redlich si colab, 2004b.).

Proteoglicanii matricei sunt, de asemenea, alterati in ligamentul parodontal in timpul miscarii dentare ortodontice. Condroitin sulfatul (CS) ligamentului parodontal si sulfatul de heparina (SA) cresc in timpul miscarii dentare si scad in hipofunctie. Modelele complexe ale modificarilor CS si HS in timpul miscarii dentare fac dificila interpretarea rolurilor lor (Esashika si colab, 2003.). Acidul hialuronic (HA), prezent in ligamentul parodontal, se poate lega in cantitati crescute de versican si leaga proteine localizate in zonele de compresie, pentru a crea mari agregate hidratate. Acestea pot actiona fie prin limita deteriorarii tesutului prin disiparea fortelor compresive excesive, fie prin oferirea unui spatiu care faciliteaza migrarea celulelor resorbtive in aceste zone (Sato si colab, 2002.).


Remodelarea osoasa:

Remodelarea osoasa este un proces ciclic si reprezinta un raspuns la necesitatea repararii si reinnoirii continue a scheletului pe tot parcursul vietii. Frost a descris o unitate de baza multicelulara care efectueaza o serie coordonata de evenimente cuprinse in ciclul de remodelare. Un ciclu de remodelare are patru faze: activarea, resorbtia, inversarea si formarea. Desi aceasta succesiune de evenimente a fost confirmata in numeroase contexte si este larg acceptat modul in care decurg reparatiile scheletului in sine, mecanismele precise de control ale unitatilor de baza multicelulare nu sunt bine intelese. Calendarul evenimentelor histologice care se desfasoara in zonele de compresie din miscarea dentara ortodontica este in concordanta cu un ciclu de remodelare (King si colab, 1991b). Acestia, citeaza impreuna cu o multitudine de dovezi ale aparitiei de leziuni tisulare, ideea ca remodelarea este un proces predominant al turnoverului osos din zonele de compresie ortodontice.

Un aspect important este reprezentat de modul in care sunt initiate ciclurile de remodelare. Mai multe dovezi experimentale au legat remodelarea osoasa de microleziuni si de cresterea ulterioara a activitatii celulare  Microfisurile osoase cauzate de oboseala sau traume pot juca un rol important in initierea ciclurilor de remodelare (Galleyv si colab., 2006), deoarece deplasarile fisurale sunt capabile sa rupa procesele celulare osteocitice, determinand secretia directa de molecule bioactive in matricea extracelulara, declansand un raspuns (Hazenberg si colab, 2006.). Prevalenta crescuta a microfisurilor in zonele de comprimare din miscarea dentara ortodontica sugereaza, ca ele sunt importante in initierea remodelarii osoase ortodontice (Verna si colab, 2004.).

Un alt concept important pentru remodelarea osoasa este cel de cuplare intre resorbtie si formare. Mecanismele de cuplare au fost postulate ca fiind un mijloc prin care nu se pierde si nici nu se castiga os in timpul repararii. Mecanismul exact prin care este obtinuta cuplarea nu este bine inteles, dar se considera ca este controlat prin eliberarea moleculelor paracrine de catre celulele unitatii de baza multicelulare. In primele stadii de reparatie din timpul deplasarii dentare, aparitia mai multor factori paracrini (de exemplu, IGF-II, IGFBP-5 sau -6) in interiorul lacunelor si in cementoblaste sugereaza ca acestea pot fi implicate in controlul aceastei secvente a remodelarii (Hazenberg si colab, 2006.).

Un alt aspect legat de cuplare implica ratele relative ale resorbtiei comparativ cu ale formarii. Formarea este destul de rapida, dupa care devine semnificativ mai lenta. Acest lucru are consecinte importante pentru oasele in curs de remodelare extensiva - de exemplu, in perioada de premenopauza (Recker si colab, 2004.). In aceste cazuri, formarea osoasa nu poate tine pasul cu cantitatea mare de resorbtie, rezultatul final fiind pierderea neta de masa osoasa. Imposibilitatea proceselor formative de a tine pasul cu resorbtie in cursul proceselor extinse de remodelare din zonele de compresie din timpul tratamentului ortodontic, ar putea explica manifestari clinice ca mobilitatea dentara si largirea spatiului ligamentului parodontal.


REGLAREA MOLECULARA A OSTEOCLASTOGENEZEI:


Biologiea osteoclastelor a suferit o revolutie la sfarsitul anilor 1990, nu numai prin descoperirea unui set critic de molecule care regleaza osteoclastogeneza dar si prin elucidarea modului in care acestea interactioneaza.. In special, un membru al familiei liganzilor TNF, RANKL, s-a dovedit initial a fi o legatura membranara pentru proteinele prezente in osteoblaste si celulele stromale, precum si pentru alte tipuri de celule (Anderson si colab, 1997; Wong si colab, 1997; Yasuda si colab, 1998a). Celula-celula de semnal dintre celulele cu RANKL pe suprafata lor si precursorii osteoclastilor transporta RANK receptorul inducand atat formarea cat si activarea osteoclastelor (Yasuda si colab, 1999). Dintre cele trei izoforme ale RANKL, care au fost identificate, doua sunt proteine transmembranare, in timp ce a treia-RANKL3-este o forma solubila (Ikeda si colab, 2001).

Receptorul pentru RANKL al precursorilor osteoclastelor este activator al receptorilor de NF-κB (RANK), identificat pentru prima data de catre Anderson si colab. (1997). La randul sau, CSF-1 este necesar pentru a creste reglarea expresiei genelor RANK in precursorii osteoclastelor (Arai si colab, 1999), si acesta este unul dintre motivele pentru care CSF-1 este necesar osteoclastogenezei. Cresterea si diferentierea preosteoclastelor mononucleare sunt de asemenea dependente de CSF-1 (Stanley si colab, 1983;. Tanaka si colab, 1993.). Mai mult decat atat, CSF-1 pare sa aiba proprietati chemotactice pentru recrutare celulelor progenitoare ale osteoclastelor (Wang si colab, 1988;. Bober si colab, 1995;. Que si Wise, 1997).

Cuplarea de tip celula-celula de semnalizare implica legarea RANKL la RANK ceea ce are ca rezultat recrutarea unor diferiti membri ai receptorilor TNF asociati factorilor (TRAFs) in cadrul precursorilor osteoclastelor, dintre care TRAF6 pare a juca un rol cheie (Darnay si colab, 1999 ; Wong si colab, 1999). De exemplu, TRAF6 activeaza caile de semnalizare pentru NFκB si c-Fos (Boyle si colab, 2003.). Soarecii care nu prezinta gena c-Fos nu au osteoclaste, dar au precursori ai osteoclastelor (Grigoriadis si colab, 1994.) si acelasi lucru este valabil si pentru soarecii lipsiti de genele NFκB (Franzoso si colab, 1997;.Iotsova si colab, 1997). Mai mult decat atatla acesti soareci, dintii nu erup. Un interes deosebit in ceea ce priveste c-Fos este acela ca RANKL de semnalizare prin intermediul c-Fos induce gena interferonului-β (IFN-β) in celulele progenitoare ale osteoclastilor si un feed-back negativ al sintezei IFN-β in celule pentru a inhiba expresia c-FOS (Takayanagi si colab, 2002.).

TRAF6 se leaga, de asemenea, la Src tirozin kinaza, care este probabil molecula efectoare in activarea osteoclastelor, deoarece este necesara rearanjarii proteinelor citoskeletale pentru a forma o granita neregulata (ruffled border) (Boyce si colab, 1992.). Src pare, de asemenea, sa determine supravietuirea osteoclastelor prin prevenirea apoptozei (Wong si colab, 1999; Xing si colab, 2001).

Este evident necesar si un mijloc pentru reglarea si inhibarea stimularii osteoclastogenezei. Molecula care face acest lucru este osteoprotegerinul, o glicoproteina secretata care este un receptor capcana pentru RANKL (Simonet si colab, 1997;. Tsuda si colab, 1997;. Yasuda si colab, 1998b.). Legarea osteoprotegerinului la RANKL inhiba cuplajul de tip celula-celula de semnalizare care are loc intre RANKL de pe membrana lor celulara si precursorii osteoclastelor, ceea ce are ca rezultat inhibarea osteoclastogenezei (Yasuda si colab, 1998b, 1999.). Rezultatele obtinute in vivo, arata o supraproductie (supraexprimare) de osteoprotegerin la soareci transgenici in osteopetroza si prezenta a mai putine osteoclaste, desi celulele mononucleare TRAP-pozitive (preosteoclastele) sunt prezente (Simonet si colab., 1997). Injectarea de osteoprotegerin recombinant la soareci conduce la aceleasi rezultate (Simonet si colab, 1997).

Fuziunea precursorilor osteoclastelor, pentru a forma osteoclastele par sa impuna existenta unei molecule receptor transmembranare, DC-STAMP (dendritic cell-specific transmembrane protein) (Kukita si colab, 2004;. Yagi si colab, 2005.). Expresia genica a DC-STAMP este indusa in precursorii osteoclastelor de catre RANKL si inhibarea acestei expresii de catre mici interferente RNAs care inhiba formarea osteoclastelor (Kukita si colab, 2004.). Soarecii care nu au DC-STAMP de asemenea, nu au osteoclaste multinucleate si nu au celule mononucleare care sa fie tartratrezistente la fosfataza acida - TRAP-pozitive (Yagi si colab, 2005.).

Molecule implicate in osteoclastogeneza pot fi gasite in tabelul 1


Tabel cu importanta relativa a factorilor de reglare a deplasarii dentare:


Mediatori

Deplasare dentara ortodontica

CSF-1

RANRL

OPG

IL-1

TGF-β1

TNF-α

VEGF

BMP-2










Scala de apreciere este: (+) efect slab; (++) efect moderat; (+++) efect puternic.

In deplasarea dentara:

Osteoclastogeneza in miscarea dentara ortodontica este initiata de catre doua modificari legate de aplicarea fortei: leziuni tisulare, cu aparitia ulterioara a proceselor inflamatorii in ligamentul parodontal si deformarea procesului alveolar. Osteoclastele si celulele progenitoare ale osteoclastelor, sunt identificate prin sinteza de ATP-aza tartratrezistenta si H (+)-ATP-aza immunohistochimica, care apar in zonele de compresie in termen de cateva zile de la aplicarea fortelor. Inductia osteoclastelor, reprezentata de preosteoclastele mononucleare, are loc prima in spatiile vasculare si medulare ale crestei alveolare, urmate de cresterea lor in spatiul ligamentului parodontal (Yokoya si colab, 1997;.Rody si colab, 2001). Numarul lor in ligamentul parodontal si osul alveolar, in corelatie cu predictia asupra intinderii (solicitarii) prin metoda elementelor finite (FEM), este mai mare in zonele de compresie comparativ cu cele de tensiune (Kawarizadeh si colab, 2004.). Cresteri ale citokinelor proinflamatorii (IL-1, 6, 8, si TNFα) se coreleaza, de asemenea, cu aceasta distributie (Alhashimi si colab, 2001; Bletsa si colab, 2006; Lee si colab, 2007), sugerand ca citokinele sunt initiatori importanti ai osteoclastogenezei in miscarea dentara. Experimentele au demonstrat de asemenea ca aceste citokine interactioneaza sinergic cu bradikinina si trombina in biosinteza de prostaglandine, mediind astfel resorbtia osoasa inflamatorie (Marklund si colab, 1994;. Ransjo si colab, 1998.). De asemenea, exista dovezi ca administrarea locala de rhVEGF imbunatateste semnificativ numarul de osteoclaste din zonele de presiune in timpul deplasarii dentare ortodontice la soarecii cu osteopetroza (Kaku si colab, 2001.) si ca tratamentul cu anticorpi anti-VEGF reduce numarul osteoclastelor si rata de deplasare dentara (Kohno si colab, 2005.). Analiza acestor date sugereaza ca mecanismul VEGF-CSF-1, descris anterior in osteoclastogeneza asociata eruptiei dentare, poate fi, de asemenea, important in miscarea dentara ortodontica (vezi daca este cazul portiunea din articol netradusa).

Modificarile in RANK, RANKL si osteoprotegerin in tesuturile dentare-de sprijin in timpul miscarii dentare ortodontice au fost demonstrate de Oshiro si colab. (2002), respectiv de (Kanzaki si colab, 2001.). prin stimularea RANKL si inhibarea osteoclastogenezeide catre osteoprotegerin. Fortele de compresie cresc reglarea RANKL pe calea PGE2, sprijinind osteoclastogeneza (Kanzaki si colab, 2002.), in timp ce transferul local de gene de la osteoprotegerin la tesuturile de sustinere ale dintelui inhiba osteoclastogeneza mediata RANKL si miscarea dentara (Kanzaki si colab., 2004). Cresteri ale RANKL si scaderi ale osteoprotegerinului au fost demonstrate, de asemenea, in cazurile severe de resorbtiei radiculara de cauza ortodontica, sugerandu-se ca acest mecanism poate fi important pentru aceste sechele ale tratamentului ortodontic (Yamaguchi si colab, 2006.).

Clearance-ul osteoclastelor in zonele de compresie, in experimente pe sobolani, are loc (apare) dupa 5-7 zile de la activarea aparatul (King si colab, 1991b.). Acest lucru este initiat in parte prin apoptoza osteoclastelor, urmata de necroza secundara (Noxon si colab, 2001.). Fortele fizice actioneaza prin intermediul receptorilor specifici pentru legarea moleculelor, cum ar fi integrinele, prin adeziuni focale ale proteinelor si a citoscheletului - pentru a activa anumite cai ale proteinkinazei (p.38 MAPK si JNK / SAPK vezi articol- parte netradusa), care la randul sau, amplifica semnalul si activeaza caspases (cysteine-aspartic proteases sau cysteine-dependent aspartate-directed proteases), determinand apoptoza osteoclastelor. Fenotipul celular si caracterul stimulilor fizici determina caile care sunt activate si, in consecinta, variabilitatea raspunsurilor la un stimul specific in diferitele tipuri de celule (Hsieh si Nguyen, 2005). In plus fata de osteoclaste, osteocitele s-au dovedit a fi supuse apoptozei in zonele de compresie ortodontica (Hamaya si colab., 2002), dar detaliile modului in care aceste doua mecanisme difera raman neclare. Aceasta din urma este legat de lipsa de utilizare (Bakker si colab, 2004.), sugerand ca descarcarea fibrelor principale ale ligamentului parodontal in aceste zone poate fi importanta.


REGLAREA MOLECULARA A OSTEOGENEZEI

Tractiunea determina activitatea osteogenica si natura sarcinilor aplicate determina recrutarea osteoblastilor. Sarcinile statice nu par sa joace un rol important in osteogeneza scheletala. In schimb, osteogeneza este influentata de episoadele de incarcare (solicitare) care depasesc un anumit prag si cele mai importante caracteristici ale acestor sarcini sunt ritmul solicitarii, amplitudinea si durata (Forwood si Turner, 1995). La priima vedere, osteogeneza in raport cu deplasarea dentara pare neobisnuita, deoarece multe aparate ortodontice sunt concepute pentru a fi statice, sau pentru a disipa incet sarcinile. Cu toate acestea, este important sa realizam ca dentitia este expusa mai multor schimbari de incarcare in timpul masticatiei, deglutitiei si vorbirii, sugerand ca sarcinile aplicate dentitiei sunt rareori statice.

Osteogeneza asociata solicitarilor ortodontice este mediata de diferite molecule osteoinductive. In general, cele mai multe dintre aceste molecule sunt reglate de catre tractiune si actioneaza prin stimularea proliferarii celulelor precursoare ale osteoblastilor in ligamentul parodontal, formarea ulterioara de os si inhibarea resorbtiei osoase. Moleculele care au fost legate de deplasarile dentare ortodontice sunt TGFβ (Brady si colab, 1998), diverse BMPs (Mitsui si colab, 2006.), sialoproteine osoase (BSP) (Domon si colab, 2001), si factorul de crestere epidermal (FEG) (Guajardo si colab, 2000;. Gao si colab, 2002.). Desi mecanismele exacte in cadrul osteogenezei declansate de solicitarile ortodontice nu au fost examinate pe larg, pot fi trase concluzii rezonabile din literatura de specialitate pe tema mecanotransductiei osoase.

Daca e cazul exista mecanismele transductiei netraduse


STUDII VIITOARE

O mai buna cunoastere a evenimentelor moleculare din timpul miscarii dentare va oferi clinicienilor noi instrumente importante pentru monitorizarea raspunsurilor biologice la tratament. Aceasta ar trebui sa conduca la un tratament mai eficient cu un risc mai mic de aparitie a unor sechele

Diagnostic:

Astazi, nu exista modalitati convenabile de monitorizare a biomecanicii ortodontice din punct de vedere clinic. Modificarile in caracteristicile solicitarii altereaza semnificativ raspunsurile celulare. Prin urmare, pare rezonabil ca sunt necesare metode imbunatatite pentru monitorizarea fortelor ortodontice in timp real precum si imbunatatirea modelelor elementelor finite de studiere a solicitarilor care iau nastere in tesuturi.

Monitorizarea unor biomarkeri selectati din lichidul gingival in timpul tratamentului ortodontic prezinta un potential diagnostic considerabil. Cu toate acestea, aceasta abordare ridica unele probleme semnificative de exemplu, obtinerea de esantioane care sa fie necontaminate de componente bacteriene sau produse inflamatorii gingivale si micro-teste suficient de sigure si precise pentru esantioane de volum de ordinul μL, variatie in prelevarea de probe in functie de locatie si de secventa de esantioane, dezvoltarea de instrumente pentru a citi probele intr-un cadru clinic. Biomarkerii care sa urmeze calea autocrina / paracrina si efectori ai activitatii celulare au fost determinati cu succes in lichidul gingival in timpul miscarii dentare. Au fost raportate cresteri in citokinele resorbtive osoase, IL 2, 6, si 8 (Basaran si colab, 2006.), si TNFα (Lowney si colab, 1995). Recent, raporturile dintre IL-1β si receptorul antagonist al IL-1 in lichidul gingival au putut prezice viteza de deplasare dentara ortodontica intr-un cadru clinic (Iwasaki si colab, 2001.). In plus, nivelurile in fluidul gingival crevicular de RANKL si osteoprotegerin par sa reflecte o crestere a activitatii osteoclastice in ligamentul parodontal, cu niveluri mai ridicate pentru formare si mai mici pentru acesta din urma, la 24 de ore dupa activarea aparatului (Nishijima si colab, 2006.).

Enzimele care intervin in remodelarea osoasa au fost, de asemenea determinate in lichidul gingival si pot reflecta diferentele temporale si spatiale din cadrul acestei activitati in timpul deplasarii dentare ortodontice. Modificarile in  nivelurile fosfatazei acide si alcaline par sa sugereze la inceput o activitate resorbtiva osoasa, urmata de o activitate formativa, amintind de un ciclu de remodelare osoasa (Insoft si colab, 1996.). Cresteri in MMP 1, 2 (Ingman si colab, 2005;Cantarella si colab, 2006), 8 (Apajalahti si colab, 2003), si catepsinei B (Sugiyama si colab, 2003) au fost de asemenea raportate, sugerand ca ele pot fi utile pentru evaluarea clinica a degradarii matricei extracelulare. Prezenta in lichidul gingival crevicular al proteoglicanului, sulfatheparanului, indica faptul ca proteoglicanii pot fi, de asemenea, biomarkeri utili pentru procesele resorbtive din osul alveolar (Waddington si colab, 1994.).

Terapeutice:

Exista numeroase rapoarte cu privire la efectele administrarii diferitelor medicamente, hormoni si alte substante biologic active asupra deplasarii dentare ortodontice. Acestea pot fi clasificate in doua categorii generale: substante care imbunatatesc circulatia dentara si care o impiedica. Primul grup ar putea fi folositor alaturi de semnalele conventionale ortodontice biomecanice pentru a imbunatati timpul de tratament si eficienta acestuia, in timp grupul din urma ar fi util pentru ancoraj si stabilitatea rezultatelor posttratament.

Abordarile farmacologice de succes pentru reglarea miscarii dentare ortodontice au atacat in principal problema controlului osteoclastelor. Deoarece chiar si modificarile de numar ale osteoclastelor si a activitatii lor se coreleaza cu deplasarea dentara si resorbtia radiculara, s-au cautat substante care sa actioneze asupra osteoclastelor. Aceste substante au insa ,de obicei, efecte similare asupra odontoclastelor. Ca o consecinta, atunci cand acestea inhiba resorbtia radiculare, ele inhiba, de asemenea, miscarea dentara si invers.

Desi citokinele proinflamatorii nu au fost inca utilizate pentru a ameliora deplasarea dentara, administrarea de receptori solubili pentru IL-1 si TNFα s-a dovedit ca reduce numarul osteoclastelor si deplasarea dentara la sobolani (Jager si colab, 2005.). Metabolitii vitaminei D au capacitatea de a creste activitatea osteoclastica si administrarea lor locala poate creste deplasarea dentara ortodontica, la sobolani, pe aceasta cale (Collins si Sinclair, 1988). Mai multe medicamente care inhiba caile prostaglandinelor sunt eficiente in reducerea activitatii osteoclastice in tesuturile paradentale, reducand deplasarea dentara, sau limitand resorbtiile radiculare. Acestea includ aspirina, acetaminofenul, ibuprofenul, indometacinul si clodronatul (Kehoe si colab, 1996;. Liu si colab, 2006.).

Directionarea receptorului v 3 integrinei poate reduce capacitatea odontoclastelor de a se atasa pe suprafata dintilor si astfel poate constitui un mijloc eficient de reducere a resorbtiei radiculare in timpul deplasarii dentare (Talic si colab, 2006.). De asemenea, osteoprotegerinul poate reduce activitatea osteoclastica, deplasarea dentara si resorbtia radiculara (Penolazzi si colab, 2006.). Tetraciclinele modificate chimic au capacitatea de a inhiba MMPs fara nici un efect antibacterian. Acestea inhiba numarul osteoclastelor din zonele de compresie, eventual prin cresterea apoptozei sau reducerea migratiei. S-a dovedit ca ele reduc miscarea dentara ortodontice (Bildt si colab., 2006) si resorbtia radiculara (Mavragani si colab, 2005.). Bisfosfonatii actioneaza asupra osteoclastelor inhiband activitatea lor resorbtiva. Acestia inhiba, de asemenea, deplasarile dentare ortodontice (Igarashi si colab, 1994;. Liu si colab, 2002.), dar prezinta un riscul de a produce osteonecroza maxilarelor. Relaxinul uman  actioneaza prin cresterea turnoverului tesutului conjunctiv fibroas.

Adachi T, Sato K, Tomita Y. Directional dependence of osteoblastic calcium response to mechanical stimuli. Biomech Model Mechanobiol.

Ajubi NE, Klein-Nulend J, Alblas MJ, Burger EH, Nijweide PJ. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am J Physiol.

Alhashimi N, Frithiof L, Brudvik P, Bakhiet M. Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofacial Orthop. :307-312. [PubMed]

Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. :175-179. [PubMed]

Apajalahti S, Sorsa T, Railavo S, Ingman T. The in vivo levels of matrix metalloproteinase-1 and -8 in gingival crevicular fluid during initial orthodontic tooth movement. J Dent Res. :1018-1022. [PubMed]

Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. :1741-1754. [PMC free article] [PubMed]

Arnoczky SP, Tian T, Lavagnino M, Gardner K. Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J Orthop Res. :328-333. [PubMed]

Bakker A, Klein-Nulend J, Burger E. Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun. :1163-1168. [PubMed]

Bakker AD, Soejima K, Klein-Nulend J, Burger EH. The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech. :671-677. [PubMed]

Bartlett JD, Zhou Z, Skobe Z, Dobeck JM, Tryggvason K. Delayed tooth eruption in membrane type-1 matrix metalloproteinase deficient mice. Connect Tissue Res. (Suppl 1):300-304. [PubMed]

Basaran G, Ozer T, Kaya FA, Hamamci O. Interleukins 2, 6, and 8 levels in human gingival sulcus during orthodontic treatment. Am J Orthod Dentofacial Orthop. :e1-6. [PubMed]

Beertsen W, Holmbeck K, Niehof A, Bianco P, Chrysovergis K, Birkedal-Hansen H, et al. On the role of MT1-MMP, a matrix metalloproteinase essential to collagen remodeling, in murine molar eruption and root growth. Eur J Oral Sci. :445-451. [PubMed]

Berkovitz BK, Thomas NR. Unimpeded eruption in the root-resected lower incisor of the rat with a preliminary note on root transection. Arch Oral Biol. :771-780. [PubMed]

Besser A, Safran SA. Force-induced adsorption and anisotropic growth of focal adhesions. Biophys J. :3469-3484. [PMC free article] [PubMed]

Bildt MM, Henneman S, Maltha JC, Kuijpers-Jagtman AM, Von den Hoff JW. CMT-3 inhibits orthodontic tooth displacement in the rat. Arch Oral Biol. :571-578. [PubMed]

Bletsa A, Berggreen E, Brudvik P. Interleukin-1alpha and tumor necrosis factor-alpha expression during the early phases of orthodontic tooth movement in rats. Eur J Oral Sci. :423-429. [PubMed]

Bloomfield SA. Cellular and molecular mechanisms for the bone response to mechanical loading. Int J Sport Nutr Exerc Metab.

Bober LA, Grace MJ, Pugliese-Sivo C, Rojas-Triana A, Sullivan LM, Narula SK. The effects of colony stimulating factors on human monocyte cell function. Int J Immunopharmacol. :385-392. [PubMed]

Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest. :1622-1627. [PMC free article] [PubMed]

Boyde A, Hobdell MH. Scanning electron microscopy of primary membrane bone. Z Zellforsch Mikrosk Anat. :98-108. [PubMed]

Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. :337-342. [PubMed]

Brady TA, Piesco NP, Buckley MJ, Langkamp HH, Bowen LL, Agarwal S. Autoregulation of periodontal ligament cell phenotype and functions by transforming growth factor-beta1. J Dent Res. :1779-1790. [PubMed]

Bronckers AL, Engelse MA, Cavender A, Gaikwad J, D'Souza RN. Cell-specific patterns of Cbfa1 mRNA and protein expression in postnatal murine dental tissues. Mech Dev. :255-258. [PubMed]

Brudvik P, Rygh P. Root resorption beneath the main hyalinized zone. Eur J Orthod. 1994a; :249-263. [PubMed]

Brudvik P, Rygh P. Multi-nucleated cells remove the main hyalinized tissue and start resorption of adjacent root surfaces. Eur J Orthod. 1994b; :265-273. [PubMed]

Brudvik P, Rygh P. The repair of orthodontic root resorption: an ultrastructural study. Eur J Orthod. :189-198. [PubMed]

Burger EH, Klein-Nulend J. Mechanotransduction in bone-role of the lacuno-canalicular network. FASEB J.

Cahill DR. Eruption pathway formation in the presence of experimental tooth impaction in puppies. Anat Rec. 1969a; :67-77. [PubMed]

Cahill DR. The histology and rate of tooth eruption with and without temporary impaction in the dog. Anat Rec. 1969b; :225-238. [PubMed]

Cahill DR, Marks SC., Jr Tooth eruption: evidence for the central role of the dental follicle. J Oral Pathol. :189-200. [PubMed]

Cahill DR, Marks SC., Jr Chronology and histology of exfoliation and eruption of mandibular premolars in dogs. J Morphol. :213-218. [PubMed]

Cahill DR, Marks SJ, Wise GE, Gorski J. A review and comparison of tooth eruption systems used in experimentation-a new proposal on tooth eruption. In: Davidovitch Z, editor. The biological mechanisms of tooth eruption and root resorption. EBSCO Media; Birmingham, AL: 1988. pp. 1-7.

Cantarella G, Cantarella R, Caltabiano M, Risuglia N, Bernardini R, Leonardi R. Levels of matrix metalloproteinases 1 and 2 in human gingival crevicular fluid during initial tooth movement. Am J Orthod Dentofacial Orthop. (568):e11-e16. [PubMed]

Casa MA, Faltin RM, Faltin K, Arana-Chavez VE. Root resorption on torqued human premolars shown by tartrate-resistant acid phosphatase histochemistry and transmission electron microscopy. Angle Orthod. :1015-1021. [PubMed]

Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res. :428-433. [PubMed]

Chachisvilis M, Zhang YL, Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA. :15463-15468. [PMC free article] [PubMed]

Chaudhuri O, Parekh SH, Fletcher DA. Reversible stress softening of actin networks. Nature. :295-298. [PubMed]


Cheek CC, Paterson RL, Proffit WR. Response of erupting human second premolars to blood flow changes. Arch Oral Biol. :851-858. [PubMed]

Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, et al. Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol. :295-305. [PMC free article] [PubMed]

Cielinski MJ, Jolie M, Wise G, Ando D, Marks SJ. Colony-stimulating factor-1 (CSF-1) is a potent stimulator of tooth eruption in the rat. In: Davidovitch Z, editor. The biological mechanisms of tooth eruption, resorption and replacement by implants. EBSCO Media; Birmingham, AL: 1994. pp. 429-436.

Cielinski MJ, Jolie M, Wise GE, Marks SC., Jr The contrasting effects of colony-stimulating factor-1 and epidermal growth factor on tooth eruption in the rat. Connect Tissue Res. :165-169. [PubMed]

Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. :278-284. [PubMed]

Crotti T, Smith MD, Hirsch R, Soukoulis S, Weedon H, Capone M, et al. Receptor activator NF kappaB ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis. J Periodontal Res. :380-387. [PubMed]

d'Ortho MP, Will H, Atkinson S, Butler G, Messent A, Gavrilovic J, et al. Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur J Biochem. :751-757. [PubMed]

D'Souza RN, Aberg T, Gaikwad J, Cavender A, Owen M, Karsenty G, et al. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development. :2911-2920. [PubMed]

Darnay BG, Ni J, Moore PA, Aggarwal BB. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem. :7724-7731. [PubMed]

Deguchi T, Takeshita N, Balam TA, Fujiyoshi Y, Takano-Yamamoto T. Galanin-immunoreactive nerve fibers in the periodontal ligament during experimental tooth movement. J Dent Res. :677-681. [PubMed]

Denhardt DT, Guo X. Osteopontin: a protein with diverse functions. FASEB J. :1475-1482. [PubMed]

Dobbins DE, Sood R, Hashiramoto A, Hansen CT, Wilder RL, Remmers EF. Mutation of macrophage colony stimulating factor (Csf1) causes osteopetrosis in the tl rat. Biochem Biophys Res Commun. :1114-1120. [PubMed]

Dolce C, Vakani A, Archer L, Morris-Wiman JA, Holliday LS. Effects of echistatin and an RGD peptide on orthodontic tooth movement. J Dent Res. :682-686. [PubMed]

Domon S, Shimokawa H, Yamaguchi S, Soma K. Temporal and spatial mRNA expression of bone sialoprotein and type I collagen during rodent tooth movement. Eur J Orthod. :339-348. [PubMed]

Drevensek M, Sprogar S, Boras I, Drevensek G. Effects of endothelin antagonist tezosentan on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop. :555-558. [PubMed]

Endlich N, Endlich K. Stretch, tension and adhesion-adaptive mechanisms of the actin cytoskeleton in podocytes. Eur J Cell Biol. :229-234. [PubMed]

Esashika M, Kaneko S, Yanagishita M, Soma K. Influence of orthodontic forces on the distribution of proteoglycans in rat hypofunctional periodontal ligament. J Med Dent Sci. :183-194. [PubMed]

Felix R, Cecchini MG, Hofstetter W, Elford PR, Stutzer A, Fleisch H. Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J Bone Miner Res. :781-789. [PubMed]

Forwood MR. Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res. :1688-1693. [PubMed]

Forwood MR, Turner CH. Skeletal adaptations to mechanical usage: results from tibial loading studies in rats. Bone. (4 Suppl):197S-205S. [PubMed]

Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, et al. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. :3482-3496. [PMC free article] [PubMed]

Frost HM. Cybernetic aspects of bone modeling and remodeling, with special reference to osteoporosis and whole-bone strength. Am J Hum Biol. :235-248. [PubMed]

Frost HM. A 2003 update of bone physiology and Wolff's Law for clinicians. Angle Orthod. :3-15. [PubMed]

Fujihara S, Yokozeki M, Oba Y, Higashibata Y, Nomura S, Moriyama K. Function and regulation of osteopontin in response to mechanical stress. J Bone Miner Res. :956-964. [PubMed]

Fukushima H, Kajiya H, Takada K, Okamoto F, Okabe K. Expression and role of RANKL in periodontal ligament cells during physiological root-resorption in human deciduous teeth. Eur J Oral Sci. :346-352. [PubMed]

Galley SA, Michalek DJ, Donahue SW. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone. J Biomech. :2026-2033. [PubMed]

Gao Q, Zhang S, Jian X, Zeng Q, Ren L. Expression of epidermal growth factor and epidermal growth factor receptor in rat periodontal tissues during orthodontic tooth movement. Zhonghua Kou Qiang Yi Xue Za Zhi. :294-296. [PubMed]

Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL. Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res. :1522-1535. [PubMed]

Gowgiel JM. Eruption of irradiation-produced rootless teeth in monkeys. J Dent Res.

Grier RL, IV, Wise GE. Inhibition of tooth eruption in the rat by a bisphosphonate. J Dent Res. :8-15. [PubMed]

Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. :443-448. [PubMed]

Guajardo G, Okamoto Y, Gogen H, Shanfeld JL, Dobeck J, Herring AH, et al. Immunohistochemical localization of epidermal growth factor in cat paradental tissues during tooth movement. Am J Orthod Dentofacial Orthop. :210-219. [PubMed]

Hagino H, Kuraoka M, Kameyama Y, Okano T, Teshima R. Effect of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the cortical bone response to mechanical loading. Bone. :444-453. [PubMed]

Hall M, Masella R, Meister M. PDL neuron-associated neurotransmitters in orthodontic tooth movement: identification and proposed mechanism of action. Today's FDA.

Hamaya M, Mizoguchi I, Sakakura Y, Yajima T, Abiko Y. Cell death of osteocytes occurs in rat alveolar bone during experimental tooth movement. Calcif Tissue Int. :117-126. [PubMed]

Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev. :685-740. [PubMed]

Hasegawa T, Yoshimura Y, Kikuiri T, Yawaka Y, Takeyama S, Matsumoto A, et al. Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodontal ligament cells. J Periodontal Res. :405-411. [PubMed]

Häusler KD, Horwood NJ, Chuman Y, Fisher JL, Ellis J, Martin TJ, et al. Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res. :1873-1881. [PubMed]

Hayashi H, Konoo T, Yamaguchi K. Intermittent 8-hour activation in orthodontic molar movement. Am J Orthod Dentofacial Orthop. :302-309. [PubMed]

Hazenberg JG, Freeley M, Foran E, Lee TC, Taylor D. Microdamage: a cell transducing mechanism based on ruptured osteocyte processes. J Biomech. :2096-2103. [PubMed]

Howard PS, Kucich U, Taliwal R, Korostoff JM. Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodontal Res. :500-508. [PubMed]

Hsieh MH, Nguyen HT. Molecular mechanism of apoptosis induced by mechanical forces. Int Rev Cytol. :45-90. [PubMed]

Huang H, Wise GE. Delay of tooth eruption in null mice devoid of the type I IL-1R gene. Eur J Oral Sci. :297-302. [PubMed]

Hughes-Fulford M. Signal transduction and mechanical stress. Sci STKE.

Igarashi K, Mitani H, Adachi H, Shinoda H. Anchorage and retentive effects of a bisphosphonate (AHBuBP) on tooth movements in rats. Am J Orthod Dentofacial Orthop. :279-289. [PubMed]

Iizuka T, Cielinski M, Aukerman SL, Marks SC., Jr The effects of colony-stimulating factor-1 on tooth eruption in the toothless (osteopetrotic) rat in relation to the critical periods for bone resorption during tooth eruption. Arch Oral Biol. :629-636. [PubMed]

Ikeda T, Kasai M, Utsuyama M, Hirokawa K. Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus. Endocrinology. :1419-1426. [PubMed]

Ingman T, Apajalahti S, Mantyla P, Savolainen P, Sorsa T. Matrix metalloproteinase-1 and -8 in gingival crevicular fluid during orthodontic tooth movement: a pilot study during 1 month of follow-up after fixed appliance activation. Eur J Orthod. :202-207. [PubMed]

Insoft M, King GJ, Keeling SD. The measurement of acid and alkaline phosphatase in gingival crevicular fluid during orthodontic tooth movement. Am J Orthod Dentofacial Orthop. :287-296. [PubMed]

Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med. :1285-1289. [PubMed]

Ishijima M, Tsuji K, Rittling SR, Yamashita T, Kurosawa H, Denhardt DT, et al. Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficient mice. J Bone Miner Res. :661-667. erratum in J Bone Miner Res 18:1558, 2003. [PubMed]

Iwasaki LR, Haack JE, Nickel JC, Reinhardt RA, Petro TM. Human interleukin-1 beta and interleukin-1 receptor antagonist secretion and velocity of tooth movement. Arch Oral Biol. :185-189. [PubMed]

Jager A, Zhang D, Kawarizadeh A, Tolba R, Braumann B, Lossdorfer S, et al. Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. Eur J Orthod. :1-11. [PubMed]

Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, et al. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. :767-773. [PubMed]

Jonsdottir SH, Giesen EB, Maltha JC. Biomechanical behaviour of the periodontal ligament of the beagle dog during the first 5 hours of orthodontic force application. Eur J Orthod. :547-552. [PubMed]

Kaku M, Niida S, Kawata T, Maeda N, Tanne K. Dose- and time-dependent changes in osteoclast induction after a single injection of vascular endothelial growth factor in osteopetrotic mice. Biomed Res.

Kaku M, Kohno S, Kawata T, Fujita I, Tokimasa C, Tsutsui K, et al. Effects of vascular endothelial growth factor on osteoclast induction during tooth movement in mice. J Dent Res. :1880-1883. [PubMed]

Kanzaki H, Chiba M, Shimizu Y, Mitani H. Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res. :887-891. [PubMed]

Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res. :210-220. [PubMed]

Kanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H. Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res. :920-925. [PubMed]

Katsumi A, Naoe T, Matsushita T, Kaibuchi K, Schwartz MA. Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J Biol Chem. :16546-16549. [PubMed]

Kawarizadeh A, Bourauel C, Zhang D, Gotz W, Jager A. Correlation of stress and strain profiles and the distribution of osteoclastic cells induced by orthodontic loading in rat. Eur J Oral Sci. :140-147. [PubMed]

Keeling SD, King GJ, McCoy EA, Valdez M. Serum and alveolar bone phosphatase changes reflect bone turnover during orthodontic tooth movement. Am J Orthod Dentofacial Orthop. :320-326. [PubMed]

Kehoe MJ, Cohen SM, Zarrinnia K, Cowan A. The effect of acetaminophen, ibuprofen, and misoprostol on prostaglandin E2 synthesis and the degree and rate of orthodontic tooth movement. Angle Orthod. :339-349. [PubMed]

King GJ, Keeling SD, McCoy EA, Ward TH. Measuring dental drift and orthodontic tooth movement in response to various initial forces in adult rats. Am J Orthod Dentofacial Orthop. 1991a; :456-465. [PubMed]

King GJ, Keeling SD, Wronski TJ. Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone. 1991b; :401-409. [PubMed]

King GJ, Latta L, Rutenberg J, Ossi A, Keeling SD. Alveolar bone turnover in male rats: site- and age-specific changes. Anat Rec. :321-328. [PubMed]

Kitahara Y, Suda N, Kuroda T, Beck F, Hammond VE, Takano Y. Disturbed tooth development in parathyroid hormone-related protein (PTHrP)-gene knockout mice. Bone. :48-56. [PubMed]

Klein-Nulend J, Bacabac RG, Mullender MG. Mechanobiology of bone tissue. Pathol Biol (Paris) :576-580. [PubMed]

Knothe Tate ML, Steck R, Forwood MR, Niederer P. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J Exp Biol. :2737-2745. [PubMed]

Kohno S, Kaku M, Kawata T, Fujita T, Tsutsui K, Ohtani J, et al. Neutralizing effects of an anti-vascular endothelial growth factor antibody on tooth movement. Angle Orthod. :797-804. [PubMed]

Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development, and lymph-node organogenesis. Nature. :315-323. [PubMed]

Konoo T, Kim YJ, Gu GM, King GJ. Intermittent force in orthodontic tooth movement. J Dent Res. :457-460. [PubMed]

Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. (469):e1-32. [PubMed]

Kukita T, Wada N, Kukita A, Kakimoto T, Sandra F, Toh K, et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med. :941-946. [PMC free article] [PubMed]

Kurokouchi K, Jacobs CR, Donahue HJ. Oscillating fluid flow inhibits TNF-alpha-induced NF-kappa B activation via an Ikappa B kinase pathway in osteoblast-like UMR106 cells. J Biol Chem. :13499-13504. [PubMed]

Kvinnsland I, Kvinnsland S. Changes in CGRP-immunoreactive nerve fibres during experimental tooth movement in rats. Eur J Orthod. :320-329. [PubMed]

Kvinnsland S, Heyeraas K, Ofjord ES. Effect of experimental tooth movement on periodontal and pulpal blood flow. Eur J Orthod. :200-205. [PubMed]

Kyomen S, Tanne K. Influences of aging changes in proliferative rate of PDL cells during experimental tooth movement in rats. Angle Orthod. :67-72. [PubMed]

Lee YH, Nahm DS, Jung YK, Choi JY, Kim SG, Cho M. Differential gene expression of periodontal ligament cells after loading of static compressive force. J Periodontol. :446-452. [PubMed]

Lew KK. Orthodontically induced microvascular injuries in the tension zone of the periodontal ligament. J Nihon Univ Sch Dent. :493-501. [PubMed]

Lew K, Sims MR, Leppard PI. Tooth extrusion effects on microvessel volumes, endothelial areas, and fenestrae in molar apical periodontal ligament. Am J Orthod Dentofacial Orthop. :221-231. [PubMed]

Lilja E, Bjornestedt T, Lindskog S. Cellular enzyme activity associated with tissue degradation following orthodontic tooth movement in man. Scand J Dent Res. :381-390. [PubMed]

Lilja E, Lindskog S, Hammarström L. Alkaline phosphatase activity and tetracycline incorporation during initial orthodontic tooth movement in rats. Acta Odontol Scand. :1-11. [PubMed]

Lin F, Fan W, Wise GE. Granule proteins of the dental follicle and stellate reticulum inhibit tooth eruption and eyelid opening in postnatal rats. Arch Oral Biol. :841-847. [PubMed]

Lindskog S, Lilja E. Fibrinogen and IgG in the hyaline zone in man after orthodontic movement. Scand J Dent Res. :156-158. [PubMed]

Liu C, Sun X, Chen Y, Hu M, Liang T. The effects of local administration of zoledronate solution on the tooth movement and periodontal ligament. Zhonghua Kou Qiang Yi Xue Za Zhi. :290-293. [PubMed]

Liu D, Wise GE. A DNA microarray analysis of chemokine and receptor genes in the rat dental follicle-role of secreted frizzled-related protein-1 in osteoclastogenesis. Bone. :266-272. [PMC free article] [PubMed]

Liu D, Xu JK, Figliomeni L, Huang L, Pavlos NJ, Rogers M, et al. Expression of RANKL and OPG mRNA in periodontal disease: possible involvement in bone destruction. Int J Mol Med. :17-21. [PubMed]

Liu D, Yao S, Pan F, Wise GE. Chronology and regulation of gene expression of RANKL in the rat dental follicle. Eur J Oral Sci. :404-409. [PubMed]

Liu JG, Tabata MJ, Fujii T, Ohmori T, Abe M, Ohsaki Y, et al. Parathyroid hormone-related peptide is involved in protection against invasion of tooth germs by bone via promoting the differentiation of osteoclasts during tooth development. Mech Dev. :189-200. erratum in Mech Dev 98:99-102, 2000. [PubMed]

Liu L, Igarashi K, Kanzaki H, Chiba M, Shinoda H, Mitani H. Clodronate inhibits PGE(2) production in compressed periodontal ligament cells. J Dent Res. :757-760. [PubMed]

Long P, Hu J, Piesco N, Buckley M, Agarwal S. Low magnitude of tensile strain inhibits IL-1beta-dependent induction of pro-inflammatory cytokines and induces synthesis of IL-10 in human periodontal ligament cells in vitro. J Dent Res. :1416-1420. [PubMed]

Long P, Liu F, Piesco NP, Kapur R, Agarwal S. Signaling by mechanical strain involves transcriptional regulation of proinflammatory genes in human periodontal ligament cells in vitro. Bone. :547-552. [PubMed]

Lowney JJ, Norton LA, Shafer DM, Rossomando EF. Orthodontic forces increase tumor necrosis factor alpha in the human gingival sulcus. Am J Orthod Dentofacial Orthop. :519-524. [PubMed]

Mabuchi R, Matsuzaka K, Shimono M. Cell proliferation and cell death in periodontal ligaments during orthodontic tooth movement. J Periodontal Res. :118-124. [PubMed]

Main JH, Adams D. Experiments on the rat incisor into the cellular proliferation and blood-pressure theories of tooth eruption. Arch Oral Biol. :163-178. [PubMed]

Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA. :13325-13330. erratum in Proc Natl Acad Sci USA 105:825, 2008. [PMC free article] [PubMed]

Marklund M, Lerner UH, Persson M, Ransjo M. Bradykinin and thrombin stimulate release of arachidonic acid and formation of prostanoids in human periodontal ligament cells. Eur J Orthod. :213-221. [PubMed]

Marks SC, Jr, Cahill DR. Experimental study in the dog of the non-active role of the tooth in the eruptive process. Arch Oral Biol. :311-322. [PubMed]

Marks SC, Jr, Cahill DR. Ultrastructure of alveolar bone during tooth eruption in the dog. Am J Anat. :427-438. [PubMed]

Marks SC, Jr, Cahill DR. Regional control by the dental follicle of alterations in alveolar bone metabolism during tooth eruption. J Oral Pathol. :164-169. [PubMed]

Marks SC, Jr, Schroeder HE. Tooth eruption: theories and facts. Anat Rec. :374-393. [PubMed]

Marks SC, Jr, Cahill DR, Wise GE. The cytology of the dental follicle and adjacent alveolar bone during tooth eruption in the dog. Am J Anat. :277-289. [PubMed]

Marks SC, Jr, Cielinski M, Sundquist K, Wise GE, Gorski J. The role of bone resorption in tooth eruption. In: Davidovitch Z, editor. The biological mechanisms of tooth eruption, resorption and replacement by implants. EBSCO Media; Birmingham, AL: 1994. pp. 483-488.

Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. :458-468. [PubMed]

Mavragani M, Brudvik P, Selvig KA. Orthodontically induced root and alveolar bone resorption: inhibitory effect of systemic doxycycline administration in rats. Eur J Orthod. :215-225. [PubMed]

Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod. :221-240. [PubMed]

Melsen B. Tissue reaction to orthodontic tooth movement-a new paradigm. Eur J Orthod. :671-681. [PubMed]

Milan JL, Wendling-Mansuy S, Jean M, Chabrand P. Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation. Biomech Model Mechanobiol. :373-390. [PubMed]

Min JK, Kim YM, Kim YM, Kim EC, Gho YS, Kang IJ, et al. Vascular endothelial growth factor up-regulates expression of receptor activator of NF-kappa B (RANK) in endothelial cells. Concomitant increase of angiogenic responses to RANK ligand. J Biol Chem. :39548-39557. [PubMed]

Mitsui N, Suzuki N, Maeno M, Yanagisawa M, Koyama Y, Otsuka K, et al. Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sci. :2697-2706. [PubMed]

Miyoshi K, Igarashi K, Saeki S, Shinoda H, Mitani H. Tooth movement and changes in periodontal tissue in response to orthodontic force in rats vary depending on the time of day the force is applied. Eur J Orthod. :329-338. [PubMed]

Mogi M, Otogoto J, Ota N, Togari A. Differential expression of RANKL and osteoprotegerin in gingival crevicular fluid of patients with periodontitis. J Dent Res. :166-169. [PubMed]

Moss ML. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. Am J Orthod Dentofacial Orthop. 1997a; :8-11. [PubMed]

Moss ML. The functional matrix hypothesis revisited. 2. The role of an osseous connected cellular network. Am J Orthod Dentofacial Orthop. 1997b; :221-226. [PubMed]

Moxham BJ, Berkovitz BK. The effects of root transection on the unimpeded eruption rate of the rabbit mandibular incisor. Arch Oral Biol. :903-909. [PubMed]

Mullender M, El Haj AJ, Yang Y, van Duin MA, Burger EH, Klein-Nulend J. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput. :14-21. [PubMed]

Murrell EF, Yen EH, Johnson RB. Vascular changes in the periodontal ligament after removal of orthodontic forces. Am J Orthod Dentofacial Orthop. :280-286. [PubMed]

Nagatomo K, Komaki M, Sekiya I, Sakaguchi Y, Noguchi K, Oda S, et al. Stem cell properties of human periodontal ligament cells. J Periodontal Res. :303-310. [PubMed]

Nakao K, Goto T, Gunjigake KK, Konoo T, Kobayashi S, Yamaguchi K. Intermittent force induces high RANKL expression in human periodontal ligament cells. J Dent Res. :623-628. [PubMed]

Nakchbandi IA, Weir EE, Insogna KL, Philbrick WM, Broadus AE. Parathyroid hormone-related protein induces spontaneous osteoclast formation via a paracrine cascade. Proc Natl Acad Sci USA. :7296-7300. [PMC free article] [PubMed]

Nauman EA, Satcher RL, Keaveny TM, Halloran BP, Bikle DD. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization. J Appl Physiol. :1849-1854. [PubMed]

Nicolay OF, Davidovitch Z, Shanfeld JL, Alley K. Substance P immunoreactivity in periodontal tissues during orthodontic tooth movement. Bone Miner. :19-29. [PubMed]

Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, et al. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med. :293-298. [PMC free article] [PubMed]

Nishijima Y, Yamaguchi M, Kojima T, Aihara N, Nakajima R, Kasai K. Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod Craniofac Res. :63-70. [PubMed]

Nixon CE, Saviano JA, King GJ, Keeling SD. Histomorphometric study of dental pulp during orthodontic tooth movement. J Endod. :13-16. [PubMed]

Nomura S, Takano-Yamamoto T. Molecular events caused by mechanical stress in bone. Matrix Biol. :91-96. [PubMed]

Norevall LI, Forsgren S, Matsson L. Expression of neuropeptides (CGRP, substance P) during and after orthodontic tooth movement in the rat. Eur J Orthod. :311-325. [PubMed]

Norevall LI, Matsson L, Forsgren S. Main sensory neuropeptides, but not VIP and NPY, are involved in bone remodeling during orthodontic tooth movement in the rat. Ann NY Acad Sci. :353-359. [PubMed]

Noxon SJ, King GJ, Gu G, Huang G. Osteoclast clearance from periodontal tissues during orthodontic tooth movement. Am J Orthod Dentofacial Orthop. :466-476. [PubMed]

Odgren PR, Kim N, MacKay CA, Mason-Savas A, Choi Y, Marks SC., Jr The role of RANKL (TRANCE/TNFSF11), a tumor necrosis factor family member, in skeletal development: effects of gene knockout and transgenic rescue. Connect Tissue Res. (Suppl 1):264-271. [PubMed]

Orellana MF, Smith AK, Waller JL, DeLeon E, Jr, Borke JL. Plasma membrane disruption in orthodontic tooth movement in rats. J Dent Res. :43-47. [PubMed]

Orellana-Lezcano MF, Major PW, McNeil PL, Borke JL. Temporary loss of plasma membrane integrity in orthodontic tooth movement. Orthod Craniofac Res. :106-113. [PubMed]

Oshiro T, Shiotani A, Shibasaki Y, Sasaki T. Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice. Anat Rec. :218-225. [PubMed]

Oyama T, Sakuta T, Matsushita K, Maruyama I, Nagaoka S, Torii M. Effects of roxithromycin on tumor necrosis factor-alpha-induced vascular endothelial growth factor expression in human periodontal ligament cells in culture. J Periodontol. :1546-1553. [PubMed]

Panupinthu N, Zhao L, Possmayer F, Ke HZ, Sims SM, Dixon SJ. P2X7 nucleotide receptors mediate blebbing in osteoblasts through a pathway involving lysophosphatidic acid. J Biol Chem. :3403-3412. [PubMed]

Penolazzi L, Magri E, Lambertini E, Calo G, Cozzani M, Siciliani G, et al. Local in vivo administration of a decoy oligonucleotide targeting NF-kappaB induces apoptosis of osteoclasts after application of orthodontic forces to rat teeth. Int J Mol Med. :807-811. [PubMed]

Peverali FA, Basdra EK, Papavassiliou AG. Stretch-mediated activation of selective MAPK subtypes and potentiation of AP-1 binding in human osteoblastic cells. Mol Med. :68-78. [PMC free article] [PubMed]

Philbrick WM, Dreyer BE, Nakchbandi IA, Karaplis AC. Parathyroid hormone-related protein is required for tooth eruption. Proc Natl Acad Sci USA. :11846-11851. [PMC free article] [PubMed]

Pilipili CM, Nyssen-Behets C, Dhem A. Microradiography and fluorescence microscopy of bone remodeling on the basal crypt of permanent mandibular premolars in dogs during eruption. Connect Tissue Res. :171-181. [PubMed]

Que BG, Wise GE. Colony-stimulating factor-1 and monocyte chemotactic protein-1 chemotaxis for monocytes in the rat dental follicle. Arch Oral Biol. :855-860. [PubMed]

Que BG, Wise GE. Tooth eruption molecules enhance MCP-1 gene expression in the dental follicle of the rat. Dev Dyn. :346-351. [PubMed]

Ransjo M, Marklund M, Persson M, Lerner UH. Synergistic interactions of bradykinin, thrombin, interleukin 1 and tumor necrosis factor on prostanoid biosynthesis in human periodontal-ligament cells. Arch Oral Biol. :253-260. [PubMed]

Recker R, Lappe J, Davies KM, Heaney R. Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res. :1628-1633. [PubMed]

Redlich M, Asher Roos H, Reichenberg E, Zaks B, Mussig D, Baumert U, et al. Expression of tropoelastin in human periodontal ligament fibroblasts after simulation of orthodontic force. Arch Oral Biol. 2004a; :119-124. [PubMed]

Redlich M, Roos H, Reichenberg E, Zaks B, Grosskop A, Bar Kana I, et al. The effect of centrifugal force on mRNA levels of collagenase, collagen type-I, tissue inhibitors of metalloproteinases and beta-actin in cultured human periodontal ligament fibroblasts. J Periodontal Res. 2004b; :27-32. [PubMed]

Reinholt FP, Hultenby K, Oldberg A, Heinegard D. Osteopontin-a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA. :4473-4475. [PMC free article] [PubMed]

Ren Y, Maltha JC, Van 't Hof MA, Kuijpers-Jagtman AM. Age effect on orthodontic tooth movement in rats. J Dent Res. :38-42. [PubMed]

Rezzonico R, Cayatte C, Bourget-Ponzio I, Romey G, Belhacene N, Loubat A, et al. Focal adhesion kinase pp125FAK interacts with the large conductance calcium-activated hSlo potassium channel in human osteoblasts: potential role in mechanotransduction. J Bone Miner Res. :1863-1871. [PubMed]

Rody WJ, Jr, King GJ, Gu G. Osteoclast recruitment to sites of compression in orthodontic tooth movement. Am J Orthod Dentofacial Orthop. :477-489. [PubMed]

Rollins BJ, Morrison ED, Stiles CD. Cloning and expression of JE, a gene inducible by platelet-derived growth factor and whose product has cytokine-like properties. Proc Natl Acad Sci USA. :3738-3742. [PMC free article] [PubMed]

Ruimerman R, Van Rietbergen B, Hilbers P, Huiskes R. The effects of trabecular-bone loading variables on the surface signaling potential for bone remodeling and adaptation. Ann Biomed Eng. :71-78. [PubMed]

Saito I, Hanada K, Maeda T. Alteration of nerve growth factor-receptor expression in the periodontal ligament of the rat during experimental tooth movement. Arch Oral Biol. :923-929. [PubMed]

Sakata M, Shiba H, Komatsuzawa H, Fujita T, Ohta K, Sugai M, et al. Expression of osteoprotegerin (osteoclastogenesis inhibitory factor) in cultures of human dental mesenchymal cells and epithelial cells. J Bone Miner Res. :1486-1492. [PubMed]

Sato R, Yamamoto H, Kasai K, Yamauchi M. Distribution pattern of versican, link protein and hyaluronic acid in the rat periodontal ligament during experimental tooth movement. J Periodontal Res. :15-22. [PubMed]

Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. :23698-23711. [PubMed]

Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. :149-155. [PubMed]

Shimada A, Shibata T, Komatsu K. Relationship between the tooth eruption and regional blood flow in angiotensin II-induced hypertensive rats. Arch Oral Biol. :427-433. [PubMed]

Sicher H. Tooth eruption: axial movement of teeth with limited growth. J Dent Res.

Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. :309-319. [PubMed]

Sims MR. Blood vessel response to pan-endothelium (RECA-1) antibody in normal and tooth loaded rat periodontal ligament. Eur J Orthod. :469-479. [PubMed]

Stanley ER, Guilbert LJ, Tushinski RJ, Bartelmez SH. CSF-1-a mononuclear phagocyte lineage-specific hemopoietic growth factor. J Cell Biochem. :151-159. [PubMed]

Su M, Borke JL, Donahue HJ, Li Z, Warshawsky NM, Russell CM, et al. Expression of connexin 43 in rat mandibular bone and periodontal ligament (PDL) cells during experimental tooth movement. J Dent Res. :1357-1366. [PubMed]

Sugiyama Y, Yamaguchi M, Kanekawa M, Yoshii M, Nozoe T, Nogimura A, et al. The level of cathepsin B in gingival crevicular fluid during human orthodontic tooth movement. Eur J Orthod. :71-76. [PubMed]

Sundquist KT, Marks SC., Jr Bafilomycin A1 inhibits bone resorption and tooth eruption in vivo. J Bone Miner Res. :1575-1582. [PubMed]

Takahashi I, Nishimura M, Onodera K, Bae JW, Mitani H, Okazaki M, et al. Expression of MMP-8 and MMP-13 genes in the periodontal ligament during tooth movement in rats. J Dent Res. :646-651. [PubMed]

Takahashi I, Onodera K, Nishimura M, Mitnai H, Sasano Y, Mitani H. Expression of genes for gelatinases and tissue inhibitors of metalloproteinases in periodontal tissues during orthodontic tooth movement. J Mol Histol. :333-342. [PubMed]

Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature. :744-749. [PubMed]

Talic NF, Evans C, Zaki AM. Inhibition of orthodontically induced root resorption with echistatin, an RGD-containing peptide. Am J Orthod Dentofacial Orthop. :252-260. [PubMed]

Tami AE, Schafler MB, Knothe Tate ML. Probing the tissue to subcellular level structure underlying bone's molecular sieving function. Biorheology. :577-590. [PubMed]

Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, et al. Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest. :257-263. [PMC free article] [PubMed]

Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, Morita I. Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochem Biophys Res Commun. :917-923. [PubMed]

Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, et al. Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res. :839-849. [PubMed]

Toms A, Gannon B, Carati C. The immunohistochemical response of the rat periodontal ligament endothelium to an inflammatory stimulus. Aust Orthod J. :61-68. [PubMed]

Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun. :137-142. [PubMed]

Turner CH, Robling AG. Mechanisms by which exercise improves bone strength. J Bone Miner Metab. (Suppl):16-22. [PubMed]

van Driel WD, van Leeuwen EJ, Von den Hoff JW, Maltha JC, Kuijpers-Jagtman AM. Time-dependent mechanical behaviour of the periodontal ligament. Proc Inst Mech Eng [H]

Van Wesenbeeck L, Odgren PR, MacKay CA, D'Angelo M, Safadi FF, Popoff SN, et al. The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci USA. :14303-14308. [PMC free article] [PubMed]

Vandevska-Radunovic V, Kvinnsland IH, Kvinnsland S, Jonsson R. Immunocompetent cells in rat periodontal ligament and their recruitment incident to experimental orthodontic tooth movement. Eur J Oral Sci. :36-44. [PubMed]

Vandevska-Radunovic V, Kvinnsland IH, Kvinnsland S. Effect of inferior alveolar nerve axotomy on periodontal and pulpal blood flow subsequent to experimental tooth movement in rats. Acta Odontol Scand. :57-64. [PubMed]

Verna C, Melsen B. Tissue reaction to orthodontic tooth movement in different bone turnover conditions. Orthod Craniofac Res. :155-163. [PubMed]

Verna C, Dalstra M, Lee TC, Cattaneo PM, Melsen B. Microcracks in the alveolar bone following orthodontic tooth movement: a morphological and morphometric study. Eur J Orthod. :459-467. [PubMed]

Volejnikova S, Laskari M, Marks SC, Jr, Graves DT. Monocyte recruitment and expression of monocyte chemoattractant protein-1 are developmentally regulated in remodeling bone in the mouse. Am J Pathol. :1711-1721. [PMC free article] [PubMed]

Von den Hoff JW. Effects of mechanical tension on matrix degradation by human periodontal ligament cells cultured in collagen gels. J Periodontal Res. :449-457. [PubMed]

Wada N, Maeda H, Tanabe K, Tsuda E, Yano K, Nakamuta H, et al. Periodontal ligament cells secrete the factor that inhibits osteoclastic differentiation and function: the factor is osteoprotegerin/osteoclastogenesis inhibitory factor. J Periodontal Res. :56-63. [PubMed]

Waddington RJ, Embery G, Samuels RH. Characterization of proteoglycan metabolites in human gingival crevicular fluid during orthodontic tooth movement. Arch Oral Biol. :361-368. [PubMed]

Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA. :2220-2224. [PMC free article] [PubMed]

Wang J, Zohar R, McCulloch CA. Multiple roles of alpha-smooth muscle actin in mechanotransduction. Exp Cell Res. :205-214. [PubMed]

Wang JM, Griffin JD, Rambaldi A, Chen ZG, Mantovani A. Induction of monocyte migration by recombinant macrophage colony-stimulating factor. J Immunol. :575-579. [PubMed]

Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW, Jr, Ahmed-Ansari A, Sell KW, Pollard JW, et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA. :4828-4832. erratum in Proc Natl Acad Sci USA 88:5937, 1991. [PMC free article] [PubMed]

Wise GE. In vivo effect of interleukin-1 alpha on colony-stimulating factor-1gene expression in the dental follicle of the rat molar. Arch Oral Biol. :163-165. [PubMed]

Wise GE, Fan W. Changes in the tartrate-resistant acid phosphatase cell population in dental follicles and bony crypts of rat molars during tooth eruption. J Dent Res. :150-156. [PubMed]

Wise GE, Lin F. Regulation and localization of colony-stimulating factor-1 mRNA in cultured rat dental follicle cells. Arch Oral Biol. :621-627. [PubMed]

Wise GE, Yao S. Expression of vascular endothelial growth factor in the dental follicle. Crit Rev Eukaryot Gene Expr. 2003a; :173-180. [PubMed]

Wise GE, Yao S. Expression of tumour necrosis factor-alpha in the rat dental follicle. Arch Oral Biol. 2003b; :47-54. [PubMed]

Wise GE, Yao S. Regional differences of expression of bone morphogenetic protein-2 and RANKL in the rat dental follicle. Eur J Oral Sci. :512-516. [PubMed]

Wise GE, Marks SC, Jr, Cahill DR. Ultrastructural features of the dental follicle associated with formation of the tooth eruption pathway in the dog. J Oral Pathol. :15-26. [PubMed]

Wise GE, Lin F, Zhao L. Transcription and translation of CSF-1in the dental follicle. J Dent Res. :1551-1557. erratum in J Dent Res 74:1721, 1995. [PubMed]

Wise GE, Huang H, Que BG. Gene expression of potential tooth eruption molecules in the dental follicle of the mouse. Eur J Oral Sci. :482-486. [PubMed]

Wise GE, Lumpkin SJ, Huang H, Zhang Q. Osteoprotegerin and osteoclast differentiation factor in tooth eruption. J Dent Res. :1937-1942. [PubMed]

Wise GE, Grier RL, IV, Lumpkin SJ, Zhang Q. Effects of dexamethasone on tooth eruption in rats: differences in incisor and molar eruption. Clin Anat. :204-209. [PubMed]

Wise GE, Frazier-Bowers S, D'Souza RN. Cellular, molecular, and genetic determinants of tooth eruption. Crit Rev Oral Biol Med. :323-334. [PubMed]

Wise GE, Ding D, Yao S. Regulation of secretion of osteoprotegerin in rat dental follicle cells. Eur J Oral Sci. :439-444. [PubMed]

Wise GE, Yao S, Odgren PR, Pan F. CSF-1 regulation of osteoclastogenesis for tooth eruption. J Dent Res. :837-841. [PMC free article] [PubMed]

Wise GE, Yao S, Henk WG. Bone formation as a potential motive force of tooth eruption in the rat molar. Clin Anat. :632-639. [PubMed]

Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem. :25190-25194. [PubMed]

Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell. :1041-1049. [PubMed]

Xing L, Venegas AM, Chen A, Garrett-Beal L, Boyce BF, Varmus HE, et al. Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival. Genes Dev. :241-253. [PMC free article] [PubMed]

Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. :345-351. [PMC free article] [PubMed]

Yamaguchi M, Kasai K. Inflammation in periodontal tissues in response to mechanical forces. Arch Immunol Ther Exp (Warsz) :388-398. [PubMed]

Yamaguchi M, Ozawa Y, Nogimura A, Aihara N, Kojima T, Hirayama Y, et al. Cathepsins B and L increased during response of periodontal ligament cells to mechanical stress in vitro. Connect Tissue Res. :181-189. [PubMed]

Yamaguchi M, Aihara N, Kojima T, Kasai K. RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res. :751-756. [PubMed]

Yang M, Mailhot G, MacKay CA, Mason-Savas A, Aubin J, Odgren PR. Chemokine and chemokine receptor expression during colony stimulating factor-1-induced osteoclast differentiation in the toothless osteopetrotic rat: a key role for CCL9 (MIP-1a) in osteoclastogenesis in vivo and in vitro. Blood. :2262-2270. [PMC free article] [PubMed]

Yao S, Ring S, Henk WG, Wise GE. In vivo expression of RANKL in the rat dental follicle as determined by laser capture microdissection. Arch Oral Biol. :451-456. [PubMed]

Yao S, Liu D, Pan F, Wise GE. Effect of vascular endothelial growth factor on RANK gene expression in osteoclast precursors and on osteoclastogenesis. Arch Oral Biol. :596-602. [PubMed]

Yao S, Pan F, Wise GE. Chronological gene expression of parathyroid hormone-related protein (PTHrP) in the stellate reticulum of the rat: implications for tooth eruption. Arch Oral Biol. :228-232. [PubMed]

Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki SI, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998a; :3597-3602. [PMC free article] [PubMed]

Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998b; :1329-1337. [PubMed]

Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Goto M, et al. A novel molecular mechanism modulating osteoclast differentiation and function. Bone. :109-113. [PubMed]

Yokoya K, Sasaki T, Shibasaki Y. Distributional changes of osteoclasts and pre-osteoclastic cells in periodontal tissues during experimental tooth movement as revealed by quantitative immunohistochemistry of H(+)-ATPase. J Dent Res. :580-587. [PubMed]

Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. :442-444. [PubMed]

You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng. :387-393. [PubMed]

Yu X, Graves DT. Fibroblasts, mononuclear phagocytes, and endothelial cells express monocyte chemoattractant protein-1 (MCP-1) in inflamed human gingiva. J Periodontol.



Contact |- ia legatura cu noi -| contact
Adauga document |- pune-ti documente online -| adauga-document
Termeni & conditii de utilizare |- politica de cookies si de confidentialitate -| termeni
Copyright © |- 2024 - Toate drepturile rezervate -| copyright